Quantifying Pile Rebound with Deflection Measuring Systems

Best Suited for Florida Soils

FDOT Contract BDV-28 977-07 Final Report

May 15, 2020

Principal Investigator:

Paul J. Cosentino, Ph.D., P.E. Florida Institute of Technology 150 W University Blvd Civil Engineering Department Melbourne, Florida 32901-6975 cosentin@fit.edu Direct 321-674-7555 Office 321-674-8048

DSR Contact:

Project Manager:

Carolyn Lockyer Director of Contracts Florida Institute of Technology 150 W University Blvd Office of Sponsored Programs Melbourne, Florida 32901-6975 clockyer@fit.edu 321-674-7490

Juan Castellanos, P.E. Florida Department of Transportation State Construction Geotechnical Engineer 14200 West SR 84 Davie, Florida 33325 Juan.Castellanos@dot.state.fl.us 954-677-7032 The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation.

Metric Conversion Table

Symbol		Multiply By	To Find	Symbol
LENGTH				
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
AREA				·
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m ²
yd ²	square yards	0.836	square meters	m ²
VOLUME				
ft ³	cubic feet	0.028	cubic meters	m ³
MASS				
OZ	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2,000 lb)	0.907	megagrams ("metric ton")	Mg (or "t")
UNIT WEIGHT				
pcf	lbf/ft ³	16.02	kilograms/ cubic meter	kg/m ³
TEMPERATURE (ex	act degrees)			
°F	Fahrenheit	5 (F-32)/9 or (F-32)/1.8	Celsius	°C
FORCE and PRESSU	JRE or STRESS			
lbf	pound force	4.45	newtons	Ν
kip	1,000 lbf	4.45	kilonewtons	kN
ton	2,000 lbf	8.90	kilonewtons	kN
lbf/in ²	pound force/ square inch	6.89	kilopascals	kPa
ksi	kips/square inch	6.89	megapascals	MPa
tsf	tons/square foot	95.76	kilopascals	kPa

Technical Report Documentation Page

	1		0	
1. Report No.	2. Government Accession No	. 3.	Recipient's Catalog No.	
4. Title and Subtitle Quantifying Pile Rebound with Deflection Measuring Systems Best Suited for Florida Soils		· Florida Soils	Report Date y, 2020	
		6. FI	Performing Organization C 7 Index 202257	Code
7. Author(s) Paul J. Cosentino, Charles R. Bostater Jr., Aline Jensen,	e Franqui, Robert J. Rogulski I	II and Matthew	Performing Organization F	Report No.
9. Performing Organization Name and Address Florida Institute of Technology		10	Work Unit No. (TRAIS)	
Civil Engineering Department		11	Contract or Grant No.	
150 West University Blvd.		Co	ntract Number	
Melbourne, FL 32901-6975 (321) 674-7555		BI	-28-977-07	
		13	Type of Report and Perio	d Covered
12. Sponsoring Agency Name and Address		Fir	al Report	
Florida Department of Transportation		Ar	ril 2017 – May 2020	
605 Suwannee Street				
Tallahassee, Florida 32399-0450		14	Sponsoring Agency Code	:
15. Supplementary Notes				
16. Abstract Certain blends of very fine sands, silts, and clays are producing pile rebound during driving. Two major high rebound items were evaluated during this research: the possibility of using new pile movement techniques during driving to validate or check pile driving analyzer (PDA) deflections and the evaluation of cyclic triaxial test data to determine the effects of damping on rebound. Pile and standard penetration rod movements were monitored with the Inopiles Pile Driving Monitoring (PDM) system and a Florida Tech camera monitoring system (CMS) at six sites throughout Florida. Movements were compared with PDA deflections. Both devices produced deflections with accuracies well below 0.04 inch (1 mm), which compared well to PDA deflections. CMS data recorded at 60 Hz, which currently requires post signal processing, was obtained in all locations, while PDM data were not. Both systems have potential for use as checks on PDA deflections. PDM measurements were most successfully obtained during SPT rod movement evaluations. Both CMS and PDM SPT rod movement evaluations showed time-dependent rod movements when driven through the blends of high rebound fine sands with silts and clays. Using 40 existing cyclic triaxial tests from six sites in Central and Northern Florida, a damping coefficient sensitivity analysis of Florida high rebound soils was completed. Two analytical approaches were used, one based on the chase were true approach ranges from 0 to 10 s ¹ b/in ² . These viscous results were not dimensionless and therefore could not be compared to the Case Western Reserve (CASE) 1974 dimensionless published coefficients. From the viscous energy absorbed per cycle. Over 70% of the damping coefficient setter option for analysis. Twelve test piles from five sites in Central and Northern Florida are similar to the CASE expected values and are also dimensionless. Therefore, the viscous energy approach is shown to be a better option for analysis. Twelve test piles from five sites in Central and Northern Flo				ere evaluated r (PDA) Florida Tech produced which currently cks on PDA r ord movement of Florida high d on the viscous s'lb/in ² . These ess published re also APWAP [®]). The recient, however, and toe damping
17. Key Word High Pile Rebound, Bouncing Piles, Pore Wate Penetrometer Test, Standard Penetration Test, S Driving Monitor, Pile Driving Analyzer.	r Pressures, Cone Soil Behavior Chart, Pile	18. Distribution Statemer Document is available to the National Technical In Springfield, Virginia 221	t the U.S. public through formation Service, 51	
	20 Sagarity Classified	this mag(a)	21 No - f D	22 Dries
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of Unclassified	unis pag(e)	655	22. Price

Acknowledgements

This work was completed under FDOT contract number BDV-28-977-07. The authors would like to acknowledge the following people for their invaluable guidance and help in the completion of this study: Dr. David Horhota from FDOT SMO and Mr. Mohamad Hussein, Principal GRL Associates, Orlando, Florida.

Executive Summary

The complex phenomenon of high pile rebound or bouncing has been occurring when large diameter (i.e., high displacement) prestressed concrete piles are driven into relatively thick layers of very fine sands with silts and clays in certain percentages. Pile rebound is believed to cause a significant decrease in the pile's end bearing capacity, and therefore, it is important that geotechnical practitioners can clearly measure it. During this research, two major areas were studied. One was measuring pile movements using three devices: (a) conventional pile driving analyzer (PDA) sensors, (b) Inopiles pile driving monitor (PDM) measuring system, and (c) the camera monitoring system (CMS) developed at Florida Tech. The second was the soil damping associated with the soils as they were subjected to cyclic triaxial testing.

Pile and standard penetration rod movements were monitored with both the PDM and Florida Tech CMS systems at six sites throughout Florida. Movements were compared with PDA deflections. Both devices produced deflections with accuracies within 0.04 inch (1 mm), which compared well to PDA deflections. CMS data, which currently requires post signal processing, were able to be obtained in all locations while PDM data were not. The CMS system provides a complete log of the pile driving record in both a visual as well as a time series signal. Both systems have potential for use as checks on PDA deflections. PDM measurements were most successfully obtained during SPT rod movement evaluations. Both CMS and PDM SPT rod movement evaluations showed time-dependent rod movements when driven through the blends of high rebound fine sands with silts and clays.

The PDM system is designed to record pile movements from a static start, which makes it difficult to use for continuous pile driving monitoring. For this reason, it produced more consistent results for sets from SPT data. PDM sets were within 8% of the CMS sets for both pile driving and SPT testing. PDM rebounds were within 26% of the CMS rebounds for pile driving only. When compared to the PDA inspector set and rebound movements, the PDM was shown to produce values for set and rebound that were within 68% for pile driving.

The soil damping evaluation included studying the time-dependent response of over 600,000 load-unload cycles from 40 cyclic triaxial tests conducted on undisturbed samples obtained from six sites in Central and Northern Florida. Smith (1960) and the Case Western Reserve (CASE) 1974 studies have established damping values. Testing was conducted in two

steps. Step one was to perform a consolidated undrained triaxial test to establish a complete stress-strain response plus the failure stress level at the desired confining stress. Step two was to conduct cyclic triaxial tests with 1,000 cycles performed at 10, 20, 40, 60, and 80 percent of the established failure stress from step one. Cycles were the standard 0.1-second loading followed by 0.9 seconds of rest or unloading.

Specialized PythonTM computer coding was developed that allowed the load versus time data for each CT stress level to be evaluated. For each cycle, an elastic modulus (E_i) was determined from the loading data, while the damping coefficient (η_i) was determined from the unloading data using the Kelvin-Voigt spring-dashpot model. The elastic moduli were evaluated to determine the quality of the data and eliminate outliers. Over 70 percent of the damping coefficients obtained from the stress-time approach ranged from 0 to 10 s·lb/in².

The damping factors, with units of stress-time, were compared to the Case Western Reserve 1974 (CASE) published unitless damping factors (J_c). To make this comparison, the average η_i values for each stress level were normalized using the soil impedance and then adjusted to account for the differences in wave speeds between the concrete piles and soil. These adjustments produced normalized average η_i values about two to five times higher than published J_c values. Another comparison was developed using the Tedesco and McDougal (1999) hysteresis-loop strain energy approach. These coefficients typically were higher for the initial 1,000 cycles and, in some cases, increased over the last 1,000 or 2,000 cycles. This method produced damping coefficients from 0.18 to 0.59, which are similar to the CASE J_c values. The area under the strain-time plots was used to rank the rebound level based on a relative average. This approach indicated that high rebound sites may produce larger areas than non-rebound sites.

Table of Contents

D	ISCLAI	MER	II
M	IETRIC	CONVERSION TABLE	III
Т	ECHNIC	CAL REPORT DOCUMENTATION PAGE	IV
A	CKNOW	VLEDGEMENTS	V
E	XECUT	IVE SUMMARY	VI
1	INTI	RODUCTION	1
	1.1	Research Background	1
	1.2	Project Objectives	5
	1.3	Supporting Tasks	5
	1.3.1	Task 1 Literature on Pile Driving Deflection Measuring Systems and Soil Damping	6
	1.3.2	Task 2 Viscoelastic Analysis of Existing Cyclic Triaxial Load versus Time Data	6
	1.3.3	Task 3 Wave Equation Software Damping Factor Sensitivity Analyses	8
	1.3.4	Task 4 High Speed Camera Validations for Inopiles PDM LASER Measuring System	8
	1.3.5	Task 5 Determine SPT and PDA Test Piles Field Testing Locations	10
	1.3.6	Task 6 Measuring System Evaluations	11
	1.3.7	Task 7 Draft Final Report	12
	1.3.8	Task 8 Final Report	12
2	LITI	ERATURE SEARCH	13
	2.1	Pile Rebound in Soils	13
	2.2	Overview of Florida's Pile Rebound	14
	2.3	Definition of High Pile Rebound	16
	2.4	Factors Affecting Pile Driving in HPR Soils	17
	2.5	Methods for Measuring Rebound	18
	2.5.1	Manual Method	18
	2.5.2	High-speed Visual Measurement Systems of Pile Penetration and Rebound	18
	2.5.3	He-Cd Laser Beam Measuring System	20
	2.5.4	Inopile PDM	21
	2.5.5	Noncontact Laser Displacement System	21
	2.5.6	FIT Camera Measurement System	23
	2.6	Summary of Pile Measurement Systems	24
	2.7	Pile Movement during Driving	25
	2.7.1	Dynamic Approach: Pile-Soil Model from the Wave Equation	26
	2.7.2	Viscoelastic Behavior of Soils	32

	2.7.3	Damping	35
	2.7.4	Pile Driver Analyzer	
	2.8	CAPWAP [®] Software	
	2.8.1	Key CAPWAP [®] Parameters	40
	2.8.2	The Pile Model	41
	2.8.3	Soil Damping	
3	SITE	DESCRIPTIONS	44
	3.1	PDM CMS PDA Site Descriptions	44
	3.1.1	Port Canaveral	
	3.1.2	Baldwin Bypass	53
	3.1.3	Dunns Creek	56
	3.1.4	Reedy Creek	59
	3.1.5	Ellis Road	64
	3.1.6	Wekiva Parkway	69
	3.1.7	Summary	80
	3.2	Visco-elastic Evaluation Sites	80
4	СНА	PTER 4 CMS, PDM, AND CT TESTING AND EVALUATION PROCEDURES	83
	4.1	PDM Initial Evaluation and Setup	83
	4.1.1	Equipment	83
	4.1.2	Preliminary Testing	84
	4.1.3	PDM Lab Tests	85
	4.1.4	Required PDM Equipment	94
	4.1.5	Data Collection for Piles	95
	4.1.6	SPT Data Collection Process	96
	4.2	CMS Testing Process	98
	4.2.1	Equipment	98
	4.2.2	Marking the Piles or Rods	100
	4.2.3	Field Testing on Piles or SPT Rods	101
	4.2.4	Data Reduction	101
	4.3	Overview of CT Testing Procedures	103
	4.4	CT Tests Performed	103
	4.5	Existing Rebound Data	105
	4.6	CT Test Procedures	105
5	CYC	LIC TRIAXIAL RESULTS AND ANALYSIS	111
	5 1	Triavial Tests Decults	111

5.2	CT Tests Results	111
5.3	CT Data Analysis	113
5.3.	Initial Calculations	115
5.3.2	2 Digitally Numbering the Cycles	116
5.3.	3 Digitally Determining Stress Levels	116
5.3.4	4 Digitally Determining Loading and Unloading Portions	116
5.3.	5 Engineering Properties	117
5.4	CT Analysis of Results	119
5.4.	Correlation to CASE Damping Factor	119
5.4.2	2 Strain versus Time Area	128
5.4.	3 Hysteresis Loop Equivalent Viscous Damping	129
5.4.4	4 Findings	133
5.5	CAPWAP® Analysis and Results	134
5.5.	l Overview	134
5.5.2	2 Sites Evaluated	134
5.5.	3 Evaluation Criteria	135
5.5.4	4 Blow Number Selections	136
5.6	CAPWAP® Damping Coefficient Sensitivity Analysis	143
5.7	Results and Correlations	144
5.7.	Rebound versus Damping Factors	144
5.7.2	2 Rebound versus CAPWAP [®] Resistance	147
5.7.	3 Rebound versus PDA Side Friction	148
5.7.4	4 Rebound versus UN	149
5.7.	5 Findings	150
6 PD	M, CMS, AND PDA MEASURING SYSTEM EVALUATIONS	152
6.1	PDM Test Pile Results	154
6.1.	Port Canaveral North Cargo Berth 8 PDM Testing	154
6.1.2	2 Baldwin Bypass End Bent 4, Production Pile 1: PDM Testing 5/14/18	157
6.1.	Reedy Creek End Bent 1, Pile 12: PDM Testing 7/19/18	160
6.1.4	4 Dunns Creek PDM Pile 10 at Pier 4 Testing	162
6.1.	5 Ellis Overpass PDM Test Pile 8 at Bent 1 Testing 11/30/18	165
6.2	PDM SPT Results	167
6.2.	Dunns Creek SPT Tests 3/14/19	167
6.2.2	2 Wekiva Parkway Wildlife Crossings 2 and 3 Testing	169
6.3	PDM, CMS, and PDA Comparisons for Test Piles	173
6.3.	Reedy Creek PDM – PDA Comparisons	173
6.3.2	2 Dunns Creek PDM – CMS – PDA Comparisons	175

	6.3.3	Ellis Road PDM – PDA Comparisons	
	6.4	PDM and CMS Comparisons for SPT	
	6.5	PDM Summaries	
	6.5.1	Summary of PDM-CMS Comparisons	
	6.5.2	Summary of PDM-SET-DFN Comparison	
	6.6	CMS Testing	
	6.6.1	CMS Results	
	6.6.2	CMS Test Pile Results	
	6.6.3	CMS Rod Color and Tape Color Analysis	
	6.6.4	CMS Summary	
	7 CON	CLUSIONS AND RECOMMENDATIONS	220
	7.1	Conclusions	
	7.1.1	PDM Conclusions	
	7.1.2	CMS Conclusions	
	7.1.3	Cyclic Triaxial and Damping Coefficient Conclusions	
	7.2	Recommendations	
	7.2.1	PDM Recommendations	
	7.2.2	CMS Recommendations	
	7.2.3	Signal Comparison Recommendations	
	7.2.4	Cyclic Triaxial and Damping Coefficient Recommendations	
	8 REF	ERENCES	
CON	TENTS OF T	HE APPENDICES	
	List of App	pendix Figures	
	List of App	pendix Tables	
	Appendix A	A. PDM Data	
	Appendix l	B. CMS Data	
	Appendix (C. PDA Data	
	Appendix l	D. CMS Testing Procedures	
	Appendix I	E. Soil Profiles and PDA Plots	
	Appendix l	F. CT Damping Analysis	
	Appendix (G. CAPWAP Output Tables Results	
	Appendix l	H. Lessons Learned for the FDOT PDM Field Usage	

List of Figures

Figure 1-1: Number of Cycles Required to Produce 1, 2.5, 5, 10, and 15 Percent Axial Strain for High (Solid Re	d)
and No Rebound (open blue) Cohesionless Soils versus Axial Strain	2
Figure 1-2 PDA Electronics and Sensors (courtesy of GRL Engineers, Inc.)	4
Figure 1-3 Typical PDA Accelerometer Displacement (inches) versus Time (milliseconds) (adapted from GRL	
Associates, Inc.)	4
Figure 1-4 Three Deflection versus Time Cycles: Ramsey Branch at 63 feet	7
Figure 1-5 Three Deflection versus Time Cycles: Heritage Parkway at 57 feet	7
Figure 1-6 Three Load versus Time Cycles Corresponding to the data above	7
Figure 1-7 Marking Paper and Line Scan Camera Setup During Pile Driving (Oliveira et al., 2013)	9
Figure 2-1 Pile Rebound from PDA Displacement-Time Data (Cosentino et al., 2010; Courtesy of GRL Enginee	ers,
Inc., adapted)	14
Figure 2-2: Number of Cycles Required to Produce 1, 2.5, 5, 10, and 15 Percent Axial Strain for High (Solid Re	d)
and No Rebound (Open Blue) Cohesionless Soils versus Axial Strain	15
Figure 2-3: Resistance versus Penetration with Quake for One Hammer Blow (Smith, 1960)	16
Figure 2-4: Pile Displacement and Rebound Recorded by the Manual Method (from Hattori and Nishiwaki 1974	ŀ,
Courtesy of GRL Engineers, Inc.)	18
Figure 2-5: Marking Paper and Line Scan Camera Setup During Pile Driving (Oliveira et al., 2013)	19
Figure 2-6: Comparison Between Elastic Rebound Results Obtained with Conventional Manual Method and the	ļ.
PDR System (Oliveira et al., 2013)	20
Figure 2-7: Illustration of the relationship between offset distance and active zone height for PDM (reprinted fro	m
Look et. al, 2015a)	21
Figure 2-8: Laser-based Reflector (R) Displacement Measurement: (a) Laser Mounted on Pile; (b) Reflector	
Mounted on Pile (Islam et al., 2016)	23
Figure 2-9 Micco Road I-95 Overpass Pile Driving Reduced Camera Data with blue lines for downward pile	
movement and red line upward movement	24
Figure 2-10: Classification of dynamic problems (after Ishihara, 1996)	26
Figure 2-11: Pile-Soil Model for Wave Equation Analysis (Smith, 1960)	28
Figure 2-12: Strain Gauge and Accelerometers Mounted on Pile and (b) PDA Equipment with CAPWAP® (Cou	rtesy
GRL Engineers, Inc.)	29
Figure 2-13: Typical PDA Pile Top Displacement versus Time Diagram from One Hammer Blow for a FDOT H	IPR
Site (from Cosentino et al., 2010)	30
Figure 2-14: PDA Measured Force and Velocity versus Time from One Hammer Blow (Courtesy GRL Engineer	rs,
Inc.)	30
Figure 2-15: CAPWAP® Iterative Process (Courtesy GRL Engineers, Inc.)	31
Figure 2-16 Maxwell Model	34
Figure 2-17 Kelvin-Voigt Model	34

Figure 2-18 Typical PDA Pile Force (Solid Line) and Velocity (Dashed Line) versus time, including 2L/c time a	long
pile (Rectangular shape)	39
Figure 2-19 Data exported from PDA	39
Figure 3-1 Google Earth Pro® Map of North Cargo Berth 8, Port Canaveral, Florida	46
Figure 3-2 Plan View of Pile Installation for North Cargo Berth 8	47
Figure 3-3 Test Boring TH-FFB4 at North Cargo Berth 8	48
Figure 3-4 North Cargo Berth 8 Pile Driving and Preliminary PDM Testing	52
Figure 3-5 Google Earth Pro® Image of Baldwin Bypass over the CSX North-South Railroad and I-10	53
Figure 3-6 Baldwin Bypass End Bent 4 North and South Bound Pile Installation Plan, Note All Piles PDA Dynamics and	mic
Testing Piles	54
Figure 3-7 Photo of Baldwin Bypass North Bound End Bent 4 Pile 1	55
Figure 3-8 Baldwin Bypass Test Boring 21A near Pile 1 End Bent 4	56
Figure 3-9 Google Earth Pro® Image of SR-15 (US-17) Over Dunns Creek Testing Region	57
Figure 3-10 Dunns Creek Testing Region near Station 436+37	58
Figure 3-11 Dunns Creek SPT BR-3 Test Boring Station 136+38	58
Figure 3-12 Floridian Place Extension RCID General Site Location (PSI, 2016)	60
Figure 3-13 Floridian Place Extension RCID Approximate Bridge Location (PSI, 2016)	61
Figure 3-14 Reedy Creek Foundation and Soil Boring Location Plan	62
Figure 3-15 Reedy Creek Soil Boring 6 Profile	63
Figure 3-16 Google Earth Pro Image of Ellis Road Overpass	64
Figure 3-17 Ellis Road Overpass Bridge 700239 Foundation Plan at Bents 1 through 3	65
Figure 3-18 Ellis Road Overpass Boring B-1 40 feet left of Test Pile 8	66
Figure 3-19 Ellis Road Overpass Boring B-4 54 feet right of Test Pile 8	67
Figure 3-20 Photo of Ellis Road Overpass Test Pile 8 at Bent 1	68
Figure 3-21 Google Earth Pro® Image of Wekiva Parkway SR-46 Improvement	69
Figure 3-22 Google Earth Pro® Image of Wekiva Bridge 110118 Pier 8 Pile 1Testing Region used for CMS	
Evaluation	70
Figure 3-23 Wekiva Bridge 110118 Detailing Pier 8 PDA Test Pile 1 Layout at Station 919+95.19	70
Figure 3-24 Wekiva Bridge 110118 Test Boring WR-WB8 at Station 919+95.19	71
Figure 3-25 Photo of Wekiva Bridge 110118 Pier 8, Test Pile 1 with black paint for CMS Evaluation	72
Figure 3-26 Google Earth Pro® Image of Wekiva Parkway WLC 2 SPT/PDM/CMS Testing Region	73
Figure 3-27 Wekiva Parkway Pile and SPT/PDM/CMS Test Boring Plan at WLC 2	73
Figure 3-28 Wekiva Parkway WLC 2 Test Boring SPT/PDM/CMS WL2-B60 Station 833+09	74
Figure 3-29 Photo of FDOT SMO Drill Rig used for SPT/PDM/CMS WLC 2 near Station 833+09 testing	75
Figure 3-30 Google Earth Pro® Image of Wekiva Parkway WLC 3 SPT/PDM/CMS Testing Region near Station	
1239+20	76
Figure 3-31 Wekiva Parkway WLC 3 SPT/PDM/CMS Testing Region near Station 1239+20	77

Figure 3-32 Wekiva Parkway WLC 3 SPT/PDM/CMS Test Boring WLC3-SR 2 near Station 1239+20	78
Figure 3-33 Photo of FDOT SMO Drill Rig used for SPT WLC 3 near Station 1239+20 testing	79
Figure 3-34 Site locations	81
Figure 4-1 Schematic of Inopiles Operation within Active Zone	83
Figure 4-2 Inopiles PDM in Case, Leveling Bag, and Surface Pro®	84
Figure 4-3 Various PDM Preliminary Testing Locations	85
Figure 4-4 Preliminary PDM Lab Deflection Versus Blow Blows 1 through 6 Page 1 of 3	87
Figure 4-5 Preliminary PDM Lab Tabulated Data Blows 1 through 6 Page 2 of 3	
Figure 4-6 Preliminary PDM Lab Deflection versus Time Blows 1 through 6 Page 3 of 3	
Figure 4-7 Example of High-quality PDM Data	91
Figure 4-8 Example of PDM Data with Error after Blow 2	92
Figure 4-9 Example of Consistent Error with PDM Data	93
Figure 4-10 CMS and PDM Field Testing in Heavy Rain	99
Figure 4-11 CMS and PDM Testing in Partially Sunny Weather	100
Figure 4-12 Pile Movement versus 60-Hz Frame Number for Baldwin Bypass Test Pile: Black Spray Paint	Line . 102
Figure 4-13 60-Hz Video Recording Software Plot from Dunns Creek SPT Rod Movements	102
Figure 4-14 Durham Geo Slope Indicator 5-500 Panel	
Figure 4-15 MTS DuraGlide 244-21 Hydraulic Actuator and Loading Frame	107
Figure 4-16 Typical Load versus Time for 10 Cycles	
Figure 4-17 Typical Deflection versus Time for 10 Cycles	
Figure 4-18 Typical Stress versus Strain for 10 Cycles	110
Figure 4-19 Typical Stress versus Strain for a Complete CT Cest with 14 Stress Levels	110
Figure 5-1 Python TM CT Data Analysis Programming Flow Chart	114
Figure 5-2 Typical Cyclic Strain versus Time Behavior	115
Figure 5-3 Range of Data Points Considered for Each Cycle	117
Figure 5-4 Typical E versus Cycle Number	118
Figure 5-5 Python [™] Polyfit Fitting Function Example	119
Figure 5-6 η versus Normalized Stress Level Based on CU Triaxial Failure Stress	120
Figure 5-7 Average Strain versus Time Curve Area per Site	129
Figure 5-8 Hysteresis Curve	130
Figure 5-9 Chaffee Rd Equivalent Viscous Damping Coefficients	131
Figure 5-10 Heritage Pkwy Equivalent Viscous Damping Coefficients	131
Figure 5-11 I-4 & SR-192 Equivalent Viscous Damping Coefficients	132
Figure 5-12 – I-4 & SR-417 Equivalent Viscous Damping Coefficients	132
Figure 5-13 I-4 & Osceola Equivalent Viscous Damping Coefficients	132
Figure 5-14 Ramsey Branch Equivalent Viscous Damping Coefficients	132
Figure 5-15 Average Equivalent Viscous Damping Coefficients for All sites	133

Figure 5-16 End Bent 1 Pile 14	137
Figure 5-17 End Bent 2 Pile 5	137
Figure 5-18 End Bent 1 Pile 1	138
Figure 5-19 End Bent 5 Pile 1	138
Figure 5-20 Intermediate Bent 3 Pile 1	139
Figure 5-21 Intermediate Bent 4 Pile 10	139
Figure 5-22 Pier 2 Pile 9	140
Figure 5-23 Pier 8 Pile 4	140
Figure 5-24 End Bent 1 Pile 1	141
Figure 5-25 End Bent 1 Pile 3	141
Figure 5-26 End Bent 4 Pile 5	142
Figure 5-27 End Bent 5 Pile 2	142
Figure 5-28 Average Rebound and Smith's Shaft Damping Factor per Site	146
Figure 5-29 Average Rebound and Smith's Toe Damping Factor per Site	147
Figure 5-30 Rebound versus CAPWAP® Ultimate Toe Resistance	147
Figure 5-31 Rebound versus CAPWAP® Ultimate Shaft Resistance	148
Figure 5-32 Rebound versus PDA SFT side friction	148
Figure 5-33 Rebound versus PDA normalized side friction	149
Figure 5-34 Rebound versus UN	150
Figure 6-1 Google Maps [®] test site locations	153
Figure 6-2 Images of Pile and PDM Setup for Port Canaveral Day 1 (Photos by Dr. Cosentino)	155
Figure 6-3 Images of Pile and PDM Setup for Port Canaveral Day 2 (Photo by Dr. Cosentino)	156
Figure 6-4 Baldwin Bypass PDM and CMS 5-foot spacing pile markings	158
Figure 6-5 Images of Pile and PDM setup for Baldwin Bypass (Photos by Cosentino)	159
Figure 6-6 Images of End Bent 1, Pile 12 and PDM Setup for Reedy Creek (Photo by Dr. Cosentino)	161
Figure 6-7 Dunns Creek Pile 10 at Pier 4 Installation	163
Figure 6-8 Images of Pile and PDM Setup for Dunns Creek (Photo by Dr. Bostater)	164
Figure 6-9 Images of Pile and PDM Setup for Ellis Overpass (Photo by Dr. Cosentino)	166
Figure 6-10 Images of SPT and PDM Setup for Dunns Creek (Photos by Robert Rogulski)	167
Figure 6-11 Wekiva Parkway 49.228-49.852 ft PDM blow 1 Indicating Negative Rebound	169
Figure 6-12 Images of SPT and PDM Setup for Wekiva Parkway Day 1 (Photos by Dr. Cosentino)	170
Figure 6-13 Images of SPT and PDM Setup for Wekiva Parkway WLC 3 Day 2 (Photos by Dr. Cosentino)	172
Figure 6-14 PDM set versus CMS set for Dunns Creek Pile	177
Figure 6-15 PDM Rebound versus CMS Rebound for Dunns Creek Pile	177
Figure 6-16 PDM Set versus CMS Set from 39.859 to 40.696 feet at Dunns Creek SPT-1	181
Figure 6-17 Dunns Creek PDM SPT Results	183
Figure 6-18 Dunns Creek PDM SPT Call-out showing Time-Dependent Movements	184

Figure 6-19 PDM Rebound versus CMS Rebound from 39.859 to 40.696 feet at Dunns Creek SPT-1	185
Figure 6-20 PDM set versus CMS set for Dunns Creek SPT-2	186
Figure 6-21 PDM Rebound versus CMS Rebound for Dunns Creek SPT-2	187
Figure 6-22 CMS Output of Displacement and Rebound for a Typical Hammer Blow	191
Figure 6-23 CMS Vertical Displacement from 15 pile Hammer Blows at Baldwin Bypass, Jacksonville Florida.	193
Figure 6-24 CMS 60-Hz Displacement at Baldwin Bypass showing Pile Set and Rebound	194
Figure 6-25 CMS Video Calibration for Reedy Creek, Orlando, Florida	195
Figure 6-26 Reedy Creek CMS Signals for 12 Hammer Blows	196
Figure 6-27 CMS Video Image from Dunns Creek Test Pile 10 at Pier 4 at 75- to 77-foot Pile Markings	197
Figure 6-28 Nine CMS Hammer Blows from Dunns Creek from 60- to 62-feet	198
Figure 6-29 CMS results from Ellis Road, Melbourne Florida	209
Figure 6-30 SPT Rod Movements from Dunns Creek	210
Figure 6-31 Expanded View of 6 Hammer Blows Showing SPT Time-Dependent Movements at Dunns Creek	211
Figure 6-32 Dunns Creek SPT Rods with White PDM Reflective Tape and Black CMS Tape	212
Figure 6-33 Poor CMS Video Frame Zoomed Image of Reflective Tape	213
Figure 6-34 Proposed Reflective Tape and Black Tape Marking Layout for CMS and PDM Systems on SPT Ro	ds
	213
Figure 6-35 CMS and PDM Markings Used for Rod Displacement Monitoring at the Wekiva test site	215
Figure 6-36 Proposed SPT Rod Chalk Line and PDM Tape Placement (Left) or White Electrical Tape and PDM]
Reflective Tape Layout (Right)	216
Figure 6-37 Video Frame with White Streaks from Drilling Mud, from Wekiva CMS Tests	218
Figure 7-1 Proposed Standardized Pile Marking	225

List of Tables

Table 1-1 Summary of High Pile Rebound Testing and Test Sites	
Table 1-2 Summary List of Required Research Information for Tasks 5 and 6	11
Table 2-1 Summary of High Pile Rebound Testing and Test Sites	15
Table 2-2: Pile Driving Variables	17
Table 2-3 Summary of the Relative Complexity, Safety, and Costs	
Table 2-4 CASE Damping Coefficient (after Hannigan et al., 1998)	
Table 3-1 Summary of PDM-CMS-PDA Testing	45
Table 3-2 Test Sites Evaluated	81
Table 3-3 SPT Borings Description	
Table 3-4 PDA Test Piles Description	
Table 4-1 Average PDM Data for Preliminary Ruler in Sand Lab Test	
Table 4-2 CT Testing Descriptions	
Table 4-3 Percentage of Depths with Rebound \geq 0.25, 0.50, and 1.00 inch	
Table 5-1 CU Triaxial Tests Results	112
Table 5-2 Average Specimen Dimensions for both CU and CT Data	115
Table 5-3 Examples of Python TM Numbering	116
Table 5-4 Average Number of Excluded E Outlier Values	
Table 5-5 Range of η [s·lb/in²] for all CT data	
Table 5-6 Range of η [s·lb/in²] for Ramsey Branch	
Table 5-7 Range of η [s·lb/in²] for Chaffee	
Table 5-8 Range of η [s·lb/in²] for I-4 & SR-192	
Table 5-9 Range of η [s·lb/in²] for I-4 & SR-417	
Table 5-10 Range of η [s·lb/in²] for I-4 & Osceola	
Table 5-11 Range of η [s·lb/in ²] for Heritage	
Table 5-12 Range of Results for Normalized Damping Factor	
Table 5-13 - Range of Equivalent Viscous Damping Coefficients	
Table 5-14 Test Piles Description	134
Table 5-15 PDA Test Piles Description	135
Table 5-16 CAPWAP® Analysis Blows Selected	143
Table 5-17 CAPWAP® Based Smith's Damping Factors	145
Table 6-1 PDA, PDM and CMS Testing Summary	
Table 6-2 PDM Data for Port Canaveral-Day 1	155
Table 6-3 PDM Data for Port Canaveral-Day 2	
Table 6-4 PDM Data for Reedy Creek - 3M Tape	
Table 6-5 PDM Data for Dunns Creek Test Pile-3M Tape	165
Table 6-6 PDM Data from Ellis Overpass Test Pile- 3M Tape	167

Table 6-7 PDM Data for Dunns Creek SPT	168
Table 6-8 PDM Data for Wekiva Parkway-Day 1 WLC 2	171
Table 6-9 PDM Data for Wekiva Parkway-WLC 3 Day 2	173
Table 6-10 PDM versus PDA for Reedy Creek	174
Table 6-11 PDM versus CMS for within 67-foot range at Dunns Creek Test Pile	176
Table 6-12 PDM versus PDA for Dunns Creek Test Pile.	179
Table 6-13 PDM versus PDA from Ellis Overpass Test Pile	180
Table 6-14 PDM versus CMS for Dunns Creek SPT-1	181
Table 6-15 PDM versus CMS for Dunns Creek 60-foot Depth SPT-2	186
Table 6-16 Summary of PDM data for Piles	188
Table 6-17 Summary of CMS - PDM Comparisons	188
Table 6-18 Summary of PDA-PDM Comparisons	189
Table 6-19 PDA, PDM, CMS Testing Overview	190
Table 6-20 End Bent 4 Production Pile 1 CMS movements.	192
Table 6-21 PDA Reedy Creek Data Summary from 90 feet.	196
Table 6-22 CMS Dunns Creek Data Summary from 60- to 62-feet	199
Table 6-23 PDA Dunns Creek Data Summary from 60- to 62-feet	200
Table 6-24 CMS Dunns Creek Data Summary from 71-foot depth	201
Table 6-25 PDA Dunns Creek Summary from the Initial 20 Hammer Blows Between 71- And 72-Feet	202
Table 6-26 PDA Statistical Data Summary from all 121 Hammer Blows between 71- and 72-feet	202
Table 6-27 CMS Dunns Creek Data Summary from 74-foot depth	204
Table 6-28 PDA Dunns Creek Summary from the Initial 20 Hammer Blows between 74- and 75-feet	205
Table 6-29 PDA Statistical Summary from all 124 Hammer Blows Between 74- and 75-feet	205
Table 6-30 CMS Dunns Creek Data Summary from 75-foot depth	206
Table 6-31 PDA Dunns Creek Summary from the Initial 20 Hammer Blows between 75- and 76-feet	207
Table 6-32 PDA Statistical Summary from All 169 Hammer Blows Between 75- and 76-feet	207

1 Introduction

1.1 Research Background

High pile rebound (HPR) is a complex pile-soil interaction problem. It is a function of many variables such as pile type, shape (i.e., open versus closed end) and length, hammer type, and soil types and densities. The accuracy of the deflection measurements used to quantify HPR can be uncertain. Findings from two FDOT research projects (BDK81-977-01 and BDV-28 977-01) indicate that relatively thick layers of fine sands with silts and clays in certain percentages may cause HPR for high displacement piles. BDV-28 977-01 findings produced an HPR decision tree to guide geotechnical engineers though several levels of testing to determine the HPR level of concern. Some engineers term HPR as bounce (Cosentino et al., 2010: Murrell et al., 2008).

To date, about a dozen sites throughout central and northern Florida have been evaluated, some with and some without HPR (Table 1-1). Field testing included (a) standard penetration tests (SPT) and (b) cone penetrometer tests with pore pressure measurements (CPTu), while lab testing on both disturbed and undisturbed samples included (a) basic index and shear strength testing and (b) cyclic triaxial tests.

The cyclic behavior indicated that rebound soils are much more resilient than nonrebound soils, which therefore warrants further understanding. Figure 1-1 shows that the fine sands with silts and clays, identified as rebound soils (shown in red), required many more cycles to reach the 2.5, 5, 10, and 15 percent strain levels than the non-rebound soils (shown in blue). HPR also was found to occur in fine sands with silts and clays within a certain range. The resiliency of these soils correlates to the additional hammer blows contractors need to penetrate these soils. These resilient soils behave in a viscoelastic manner, and the cyclic data used during the BDV-28 977-01 research may have enough data to evaluate the loading-unloading movements.

1	I-4 / US-192 Interchange / Osceola County / Florida.	v	~	~
2	State Road 417 International Parkway / Osceola County / Florida.			 ✓
3	I-4 / Osceola Parkway / Osceola County / Florida.			 ✓
4	State Road 50 and State Road 436 / Orange County / Florida.	~	~	
5	I-4 / State Road 408 Ramp B / Orange County / Florida.	~	~	
6	Anderson Street Overpass at I-4/SR-408 / Orange County / Florida.	~	~	
7	I-4 John Young Parkway/ Orange County / Florida	~		
8	I-4 Widening Daytona / Volusia County / Florida.	~	~	
9	SR 528 over Indiam River, Brevard County / Florida	~		
10	Saint Johns Heritage Parkway, Brevard County / Florida	~	~	 ✓
11	I-10 Chaffee Road, Duval County / Florida	~		~
12	State Road 83 over Ramsey Branch Bridge / Walton County / Florida.	~	 ✓ 	 ✓

Table 1-1 Summar	ry of High Pile Re	bound Testing a	and Test Sites
------------------	--------------------	-----------------	----------------

Although correlations have been developed between rebound and the CPTu, SPT N values fines, silt and clay and sand contents, they are based on rebound that is averaged over one-foot intervals from inspector visual information and not high-fidelity sensor measured movements.

Pile driving analyzer (PDA) data has historically been a useful tool for determining pile rebound (See Figure 1-2). Figure 1-3 depicts typical PDA displacement versus time data with the

maximum displacement (DMX), digital set (SET) and corresponding pile rebound displayed over about a 205-millisecond time period. However, using PDA accelerometer data to predict deflections may not always be reliable. One common problem is that the double numerical integration used to predict displacements with time can produce results, which can deviate significantly from the accurate field measurements, simply because the pile movement has not stopped during the time period or stamp (TS) that the data acquisition records data

Other than PDA evaluations, most of the systems currently available to help geotechnical engineers accurately measure pile movement and any resulting rebound are cumbersome. For example, hand measurements are dangerous since the inspector is next to the pile during driving and relatively inaccurate since the surrounding pile and soil movements must be recorded by hand on paper or tape. Video systems with special measuring tapes placed on the piles have been used, but require significant analysis time after testing to produce results. Improvements in data acquisition systems and instrumentation should make deflection data more possible and reliable. Only one direct measuring system is currently available and has the potential to improve these complex measurements. Inopiles International PTE LTD, a company based in Australia, has developed a LASER (light amplification by stimulated emission of radiation) measuring system, called the Pile Driving Monitoring (PDM) system, sold commercially for approximately \$22K. They report that it has the capability of measuring pile movements and SPT movements per hammer blow. It measures these movements using a LASER system focused on a reflective tape attached to the pile or SPT rods. The system is sold in the U.S. through Pile Dynamics in Cleveland Ohio. Data from this relatively new system will be evaluated in the Florida soils producing HPR.

Figure 1-2 PDA Electronics and Sensors (courtesy of GRL Engineers, Inc.)

Figure 1-3 Typical PDA Accelerometer Displacement (inches) versus Time (milliseconds) (adapted from GRL Associates, Inc.)

FDOT has limited experience with the Inopiles PDM LASER systems; therefore, the LASER system should be evaluated such that its results are understood and known to be reliable. Measurements with the Inopiles PDM can be compared to deflections from PDA instrumented test piles and further checked using relatively high-speed cameras set up to video movements during driving.

Using a LASER system to measure pile movements is also much safer than hand measurements and may be much simpler than video measurements. Clear knowledge of the pile deflections will help engineers understand the pile capacities and produce more economical designs.

FDOT's specification 455-5.10.3 defines excessive rebound in terms of 0.25 inches; however, this value was chosen somewhat arbitrarily and is difficult for inspectors to consistently and accurately determine. Pile movement is recorded digitally using PDA deflections on test piles, but are estimated visually by inspectors on production piles. BDV-28 977-01 findings produced promising correlations; however, they were based on 0.5 inches of rebound since lower rebound (i.e. below ½-inch) was difficult to analyze as well as its resolution was uncertain due to field measurements being collected visually. Ideally, the decrease in pile capacity during rebound should be documented using test piles so that engineers can make a knowledgeable decision about the pile quality. The sensitivity of the pile capacity determined using wave equation software should be evaluated. This process should focus on the damping factor that could account for the viscoelastic movement

1.2 Project Objectives

The objective of this work was twofold. One objective was to evaluate soil damping in the viscoelastic fine Florida sands with silts and clays using existing cyclic triaxial data, while the second objective was to evaluate how closely pile movements compares in these same soils from three independent devices. The devices are; a) the Inopiles PDM deflection-measuring system, b) Florida Tech's camera measuring system (CMS) and c) PDA accelerometer-based deflections.

1.3 Supporting Tasks

This research was accomplished through the completion of the following tasks.

1.3.1 Task 1 Literature on Pile Driving Deflection Measuring Systems and Soil Damping

To complete the literature review two main areas were evaluated; 1) the existing pile movement measuring systems and 2) the recommended literature soil damping factors used in wave equation analyses.

1.3.2 Task 2 Viscoelastic Analysis of Existing Cyclic Triaxial Load versus Time Data

As the pile is driven, the hammers impact wave travels down then back up the pile, producing elastic and plastic pile movements. The plastic movements are typically permanent; however, Florida's viscoelastic fine sands with silts and clays produce rebound during the plastic phase, while the cyclic triaxial results showed this soil to be more resilient.

During BDV-28-977-01, 30 sets of cyclic triaxial tests were conducted with 1000 cycles at eight stress levels ranging from 10% to 80% of the static failure stress. The following figures depict cyclic results. Both Figure 1-4 and Figure 1-5 show deflection versus time data while Figure 1-6 shows load verses time data that corresponds to both deflection-time plots. The data in Figure 1-4 is from a site with excessive rebound and the data in Figure 1-5 is from a site with excessive rebound data shows an increase in deflection as the load is applied, followed by a decrease that does not return to near the original value. For the non-rebound site (Figure 1-5), the deflections increase as the load is applied then decrease to nearly the original deflection. The small, or more properly slow, decrease in deflection following loading for the rebound (i.e., viscoelastic) Florida soil corresponded to rebounds in excess of ³/₄- inch, while the large or faster decrease in deflection corresponds to minimal rebound.

Figure 1-4 Three Deflection versus Time Cycles: Ramsey Branch at 63 feet

Figure 1-5 Three Deflection versus Time Cycles: Heritage Parkway at 57 feet

Figure 1-6 Three Load versus Time Cycles Corresponding to the data above

Using the existing (BDV-28 977-01) results from the cyclic triaxial testing, the unloading deflection versus time responses were analyzed. The differences between the responses from the HPR and nonHPR soils were evaluated. The analyses included determining the variations in the area under the deflection versus time curves, plus careful evaluations of the actual shapes of these responses. There are 34 sets of triaxial tests, from 6 of the sites. Each test has 1000 cycles from 5 stress levels that can be analyzed.

1.3.3 Task 3 Wave Equation Software Damping Factor Sensitivity Analyses

Viscoelastic movements are modeled as damping or time dependent movements (like car shock absorbers). There are three soil damping factors associated with pile driving; a) the Smith (1960) damping factors (Js) with units of 1/velocity, b) the CASE damping factor (Jc) which is normalized by using the pile impedance and therefore unitless and c) the viscous soil damping factor (Jv) with units of force/velocity. Note that impedance also has units of force/velocity to produce a unitless, Jc.

Based on the findings from Task 2, the wave equation software available from GRL, Inc. will be used with various damping factors to perform a sensitivity analyses on how the damping factors affect pile capacity. Test pile PDA data from each site HPR and nonHPR site will be evaluated. Following this process, the deflections from the field data PDA results will be used in a signal matching process with the CAPWAP® software to further clarify the effect of damping factors on the pile movement.

1.3.4 Task 4 High Speed Camera Validations for Inopiles PDM LASER Measuring System

High-speed high-definition camera videos were evaluated for use to video the movements during pile driving of FDOT test piles. Along with these videos, the Inopiles LASER measuring PDM and PDA equipment will be used to produce deflection data. These cameras were set-up to produce video along sections of the pile with a measuring strip mounted to it. The video output was analyzed to produce deflections versus time data. A similar set-up and associated deflection evaluation were performed by Olivera el al (2013) as shown in Figure 1-7.

Figure 1-7 Marking Paper and Line Scan Camera Setup During Pile Driving (Oliveira et al., 2013)

The camera measuring system (CMS) was evaluated to provide guidance for the following conditions.

- 1. Where should the camera be located to avoid vibrations during driving?
- 2. What type of lens or focusing would be necessary to properly evaluate the deflections?
- 3. What type of measuring strip if any should be placed on the pile?
- 4. How should the measuring tape be applied to the pile?
 - a. Does a worker climb up into the pile leads to attach the tape such that measurements are taken in the rebound zone?
 - b. Should pile rebound be encountered then the driving temporarily halted while the tape is applied so that rebound measurements can be made?
 - c. Should the tape be placed on the pile before it is lifted into the leads?
- 5. How can the camera video be synchronized with the PDA and PDM equipment so that blow counts can be matched?
- 6. How can the video information be processed quickly to validate the PDM and PDA deflections?

To control costs, options such as renting versus buying or using on campus expertise were considered. The solution was to use cameras on campus. Dr. Charles Bostater an Oceanography faculty member is an expert in remote sensing and possesses several high-speed cameras plus the ability to process the images accurately to determine movements.

1.3.5 Task 5 Determine SPT and PDA Test Piles Field Testing Locations

This task was separated into two subtasks since they are closely related. Task 5a was the identification of the SPT field-testing locations and Task 5b was the identification of PDA test piles locations. This separation allowed simpler progress tracking and reporting. From each site geotechnical, pile type and PDM/CMS system logistics information will be collected as shown in Table 1-2

Task 5a SPT Field Testing Locations: Based on the results from the cyclic triaxial testing conducted during BDV-28 977-01 it was concluded that the high rebound soils have a significantly higher "resiliency" than the non-rebound soils. This finding means that the rebound soils move less after each impact from the same repetitive or cyclic loading than the non-rebound soils. Since more resilient behavior may also relate to the rate that the movements occur, it may be possible to evaluate the movement per blow during SPT testing in various soils (both HPR and NonHPR soils) and document a different moving rate per blow for rebound soils than non-rebound soils. Therefore, SPT tests monitored with the various measuring systems were conducted to evaluate any changes in rate of movement between the rebound and non-rebound soils.

To allow FDOT to prepare for using the PDA, plus Inopiles PDM and CMS together it was proposed that five sites be identified where SPT borings could be completed. SPT borings were conducted about 50 feet from the test piles. The research team selected HPR sites based on a combination of locations from previous work (See Table 1-1) and the HPR decision tree. FDOT SMO personnel assisted in determining these sites, supplying both an instrumented SPT calibration rod and drilling equipment. PDM and CMS equipment plus FDOT's specially designed PDA instrumented SPT rod, were used during this testing. This task required thorough coordination between the research team and FDOT State Materials Office (SMO) personnel.

10

Task 5b PDA Test Pile Field Testing Locations: FDOT SMO purchased the Inopiles PDM LASER system, thereby allowing them to use the system on PDA instrumented test piles throughout Florida. They (FDOT SMO Personnel) assisted in identifying five rebound sites for using this new system as a check on the PDA data. The CMS system was used to further validate this testing. The test piles were instrumented with; a) PDA sensors; b) Inopiles LASER system and movement was videoed during driving. Pile deflections per hammer blow were recorded with all three devices simultaneously for further analysis.

Table 1-2 Summary List of Required Research Information for Tasks 5 and 6.

- 1. Basic Soil Sample Information: Site, Depth, Size of Sample, etc.
- Basic Soil Properties: Type, Color, Grain Size Distribution, Unit Weight, Moisture Content, Atterberg Limits, etc.
- 3. SPT Type, Rod Dimensions, Depths, Hole Diameter, PDA Sensors, etc.
- 4. PDA Sensors Location on Pile and/or SPT Drill Rods and Model or Software Version
- 5. Elevation of Ground Surface, Driving Template and Ground Water Table
- 6. Pile Driving Hammer Type, Drop Height, Efficiency: Cushion Type and Size
- 7. Length, Diameter and Type of Pile
- 8. Offset Distance of PDM system and Active Measuring Zone Height
- 9. Offset Distance of High-Speed Camera, Frames Per Second, Focal Distances, etc.

1.3.6 Task 6 Measuring System Evaluations

Work during this task was focused on simultaneous evaluations of the deflections recorded during all field-testing. To help with the reporting and progress tracking this task is also separated into two subtasks; Task 6a will be the SPT measuring evaluations and Task 6b will be the test piles measuring evaluations.

Task 6a SPT Measuring System Evaluations:

SPT data from the instrumented SPT rod, PMD and video camera from the five FDOT sites was used to evaluate the rod movement versus time during SPT testing. The movements from all devices were analyzed and compared. Correlations between all the device movements were made such that the appropriate conclusions and recommendations could be formulated.

Task 6b Test Pile Measuring System Evaluations:

PDA deflections from the test piles, PMD and CMS systems from the chosen FDOT sites were used to evaluate the movement versus time per pile. Correlations between all the device movements were made and the results such that the appropriate conclusions and recommendations could be formulated.

1.3.7 Task 7 Draft Final Report

The draft final report will contain well a written summary of the findings from Tasks 1 through 6 plus pertinent conclusions and recommendations. The draft final and final reports follow the Guidelines for University Presentation and Publication of Research available at http://www.fdot.gov/research/docs/T2/University.Guidelines.2016.pdf

1.3.8 Task 8 Final Report

Upon review of the draft final report, all required changes were implemented to produce the final project BDV-28 977-07 final report.

2 Literature Search

2.1 Pile Rebound in Soils

Rebound occurs when large displacement piles are driven relatively into thick layers of fine sands with certain percentages of silts and clays. These soils typically have unified soils classification system (USCS) symbols of SP, SP-SM, SP-SC or SC (Cosentino et al., 2016).

During pile driving in rebound soils, an upward pile moment (i.e., rebound) occurs following hammer blows. Rebound is typically found using two different approaches. One approach is for the pile driving inspector to visually observe it, while the second is to numerically double integrate the signal from accelerometers used for PDA (Pile Driving Analyzer) testing. The visual method has limitations based on human error, while the digital signals are inconsistent, especially when the pile movement from a hammer blow has not stopped prior to the subsequent impact.

A displacement versus time signal from a PDA test pile experiencing rebound is shown in Figure 2-1. Rebound is obtained by subtracting the set from the maximum pile top displacement (DMX), as illustrated in Figure 2-1 (Cosentino et al., 2010). Note that the initial slope, which is when the hammer contacts the pile, shows a relatively fast displacement-time movement, which from an engineering viewpoint would be considered elastic. However, the displacement-time slope after impact is slower, indicating a more time-dependent or visco-elastic response.

Figure 2-1 Pile Rebound from PDA Displacement-Time Data (Cosentino et al., 2010; Courtesy of GRL Engineers, Inc., adapted)

2.2 Overview of Florida's Pile Rebound

To date about a dozen sites throughout central and northern Florida have been evaluated, some with and some without HPR (). Field testing included: a) standard penetration tests (SPT) and b) cone penetrometer tests with pore pressure measurements (CPTu), while lab testing on both disturbed and undisturbed samples included: a) basic index and shear strength testing and b) cyclic triaxial tests.

The cyclic behavior indicated that, rebound soils are much more resilient than nonrebound soils and it therefore, warrants further understanding. Figure 1-1 shows that the fine sands with silts and clays, identified as rebound soils (shown in red), required many more cycles to reach the 2.5, 5, 10 and 15 percent strain levels than the non-rebound soils (shown in blue). HPR also was found to occur in fine sands with silts and clays within a certain range. The resiliency of these soils correlates to the additional hammer blows contractors need to penetrate these soils. These resilient soils behave in a viscoelastic manner and the cyclic data used during the BDV-28 977-01 research may have enough data to evaluate the loading-unloading movements.

Number	Description		Testing	
		SPT	CPTu	Undisturbed
1	I-4 / US-192 Interchange / Osceola County / Florida.	~	~	~
2	State Road 417 International Parkway / Osceola County / Florida.	V V		~
3	I-4 / Osceola Parkway / Osceola County / Florida.			~
4	State Road 50 and State Road 436 / Orange County / Florida.	~	~	
5	I-4 / State Road 408 Ramp B / Orange County / Florida.	~	~	
6	Anderson Street Overpass at I-4/SR-408 / Orange County / Florida.	~	~	
7	I-4 John Young Parkway/ Orange County / Florida	~		
8	I-4 Widening Daytona / Volusia County / Florida.	~	~	
9	SR 528 over Indiam River, Brevard County / Florida	~		
10	Saint Johns Heritage Parkway, Brevard County / Florida	~	~	~
11	I-10 Chaffee Road, Duval County / Florida	~		~
12	State Road 83 over Ramsey Branch Bridge / Walton County / Florida.	~	~	~

Table 2-1 Summary	of High Pile Rebound	Testing and Test Sites

Figure 2-2: Number of Cycles Required to Produce 1, 2.5, 5, 10, and 15 Percent Axial Strain for High (Solid Red) and No Rebound (Open Blue) Cohesionless Soils versus Axial Strain

Although correlations have been developed between rebound and the CPTu, SPT N values fines, silt and clay and sand contents, they are based on rebound that is averaged over one-foot intervals from inspector visual information and not high-fidelity sensor measured movements.

2.3 Definition of High Pile Rebound

Smith (1960) defined quake as the immediate or elastic movement of the pile during a hammer impact. A typical plot of static soil resistance versus pile movement is shown in

Figure 2-3. There is an assumed elastic response, which overlays the actual nonlinear response. It shows typical quake values of 0.1 to 0.35 inches plus the quake typically used in dynamic analyses.

Due to the magnitude of the hammer force and the elastic properties of the pile and surrounding soils, some elastic rebound is always expected. Rebound is not a problem as long as the permanent set (downward penetration) is sufficiently high and the pile driving is not at refusal (20 blows/inch). Occasionally during the installation of large-diameter displacement piles, the pile movement is almost entirely elastic resulting in a small or negligible permanent set. FDOT considers the rebound to be excessive if it exceeds ¹/₄ inch (FDOT Road and Bridge Construction Specifications, 455-5.10.3). Hussein et al., (2006) use the term "high-rebound," to describe this condition while others (Murrell, et al., 2008) use the term "bounce". During this research, excessive rebound will be termed "high pile rebound" or HPR. Authier and Fellenius (1980) related HPR to "large" quake or "high" quake (i.e., greater than 0.35 inches).

Figure 2-3: Resistance versus Penetration with Quake for One Hammer Blow (Smith, 1960)

2.4 Factors Affecting Pile Driving in HPR Soils

There are numerous variables associated with pile driving. Table 2-2 contains a list of 19 variables grouped into categories for piles, hammers, soils and sites. Variables related to the piles include material type, dimensions, shape and unsupported length during driving. Variables related to the hammers include type, stroke height and efficiency. The soil variables include basic index properties such as grain size and shape, density, pore water pressures during lab and field testing and pile driving, strength deformation behavior under constant strain and cyclic loading, and permeability. Site related variables include geologic stratification, pile installation order and HPR zone confining stresses. The variables being evaluated during this research are noted with a check mark. The soil related variables are being evaluated with either field tests such as the SPT, CPT or DMT or with lab tests on disturbed and thin walled tube samples.

	HPR	
Category Description		Phase II
	Material Type	
	Diameter	
Piles	Length	
	Unsupported Length	
	Shape	
	Туре	
Hammers	Stroke Height	
	Efficiency	
	Grain Size Distribution	~
	Density	~
	Pore Water Pressure	~
Soils	Particle Shape	~
50113	Consolidation Behavior	~
	Permeability	~
	Static Shear Behavior	~
	Cyclic Shear Behavior	~
	Geologic Stratification	~
Site	Confining Stresses	~
	Installation Order	

= variables evaluated during this research

2.5 Methods for Measuring Rebound

2.5.1 Manual Method

The manual method of measuring pile displacement and rebound consists of taping paper onto the pile near a reference board or beam. As the pile is driven, a pencil moved horizontally across the edge of the reference board records the pile's movement as illustrated in Figure 2-4. The resulting graphs show each hammer-blow's maximum displacement and rebound. While the method is simple, it requires a high degree of dexterity and lacks the precision needed for complex engineering investigations. In addition, there is also a risk of injury to the operators.

Figure 2-4: Pile Displacement and Rebound Recorded by the Manual Method (from Hattori and Nishiwaki 1974, Courtesy of GRL Engineers, Inc.)

2.5.2 High-speed Visual Measurement Systems of Pile Penetration and Rebound

2.5.2.1 High Speed Line Camera System

Bum-Jae et al. (2002) patented an approach for measuring pile movement during installation by using a high-speed camera. The measurement system, portrayed in Figure 2-5, consists of special marking paper, a high-speed line scan camera equipped with a zoom lens and
a personal computer. Line scan cameras use a single line of pixels to scan images and, therefore, require less processing than conventional digital cameras. Fax machines are an example of line scan cameras. The method is based on two-dimensional motion achieved by stacking alternating white and black right-angled triangles on paper as shown in Figure 2-5. As the pile is driven, the line-scan camera produces a line image by scanning from the top to the bottom of the attached marking paper. The height (H) of each triangle is 1.5-inch (40 mm) and the width (W) is 4-inches (200 mm). The line-scanned image is used to determine a location along the pile. This methodology shows promise in measuring pile movement and rebound during driving; however, as shown in the figure the equipment is mounted very close to the pile. Therefore, it causes not only safety concerns but also concerns about the camera stability.

Figure 2-5: Marking Paper and Line Scan Camera Setup During Pile Driving (Oliveira et al., 2013)

2.5.2.2 Digital Image Processing System

Oliveira et al., (2011) developed a fast tool to measure the rebound and the final set for driven prestressed concrete piles with diameters varying from 23.6 to 31.5-inches (60 to 80 cm) and lengths varying from 65 to 165 feet (20 to 50 m). Three coastal locations in Brazil were used, one in Rio de Janeiro, another in Sepetiba and the third in Itajai. All three test locations had known soil profiles and NSPT values. Measurements were performed using digital image processing techniques. An A4-size sheet laminated with a printed pattern was fixed to the pile, and then a standard video camera (30 Hz sampling rate) was used to capture the images. An optical rebound analyzer (termed PDR by the authors) consisting of both a charged couple device (CCD) camera, mounted on a tripod, and a computer, was placed so that it faced towards the pile

at a distance of approximately 15 to 30 ft (5 to 10 m). This spacing ensured that there was no significant effect from driving vibrations on the results.

A comparison between rebound values obtained by the PDR and the manual method is exhibited in Figure 2-6. These results indicated good agreement between the two methods. The manual method produced slightly higher rebound predictions at values over 0.4-inches (10 mm) than the PDR method (Figure 2-6). The authors termed this rebound "elastic".

Figure 2-6: Comparison Between Elastic Rebound Results Obtained with Conventional Manual Method and the PDR System (Oliveira et al., 2013)

2.5.3 He-Cd Laser Beam Measuring System

Another method to physically measure pile displacements and rebound was proposed by Hattori (1974). A helium-cadmium (He-Cd) laser beam, used in conjunction with photosensitive oscillograph paper attached to the pile, produces traces of the pile movement. The laser beam has a high energy density and the proper convergence characteristics that allow it to transmit and focus the beam onto a point at a distance of 32 to 64 ft (10 to 20 m). During a field trial, the laser beam produced visual traces of pile movement including rebound after only a few minutes.

2.5.4 Inopile PDM

The Inopile Pile Driving Monitor (PDM) uses LED opto-electronic technology to measure pile set and temporary compression as well as calculate peak pile velocity (Look et. al 2015a). PDM measurements involve placing a reflector on the pile (Look et. al 2015b). The PDM is recommended for placement about 30 to 45 feet (10-15 m) from the pile. It allows for a greater degree of safety than other methods as operators can conduct measurements from a safe distance away from the pile driving hammer that avoids the risk of being hit by falling parts, broken cushions or spalling concrete above (Look and Seidel, 2015). The PDM has a vertical field of view of 1.5 ft (0.45 m) at 32 ft (10 m) range. This field of view varies marginally with range as illustrated in Figure 2-7 (Look et. al, 2015a). PDM sampling at 240Hz (Look et. al 2015b) yields an accuracy of 0.004-inch (0.1mm) at 32 ft (10m) (Look and Seidel, 2015).

Figure 2-7: Illustration of the relationship between offset distance and active zone height for PDM (reprinted from Look et. al, 2015a)

2.5.5 Noncontact Laser Displacement System

The principle of non-contact laser sensors is largely divided into three types; eddycurrent, optical, and ultrasonic waves. The eddy-current technique has a short measurement range and is therefore not suitable for this application. The ultrasonic wave style has a long measurement range and can measure all objects; however, it is greatly affected by environmental factors, such as wind and temperature. Thus, when outside use is intended, the optical laser displacement sensor (LDS) technique is the most appropriate option (Park et al., 2013b).

LDS with wireless data acquisition and transmission have been used in applications such as structural health monitoring (Park et al., 2013a), measuring the deflection of structural members in an irregular building (Park et al., 2013b), and measuring the displacement of medium and short span bridges (Tian et al., 2014). In these applications, the LDS is measuring a displacement that is parallel to the laser beam while the reflecting surface used is perpendicular to the laser beam. A similar setup could be used to measure pile displacement. It could be accomplished in two ways. The first would be fastening the laser and the wireless sensor to the pile with the laser pointed down at a stationary reflector at the base of the pile. This set-up means that the delicate laser would be subjected to the dynamic impacts associated with driving. The second option would be to have the laser and the wireless sensor stationary near the base of the pile with the laser pointing up at the reflector fastened to the pile. Of the two setups, the second is the more practical as mounting a reflector plate to the pile is simpler than mounting both the laser and wireless sensor. The advantage to this setup is that it allows to operator to take measurements from a safe distance away from the pile. The disadvantage to the setup is that it leaves valuable equipment dangerously close to the pile.

Islam et al., (2016) developed a novel method for measuring inter-story drift that allows for LDS equipment to measure a displacement that is perpendicular to the laser beam by using an angled reflector plate illustrated in Figure 2-8. This alteration could also be used to measure pile displacement, which would allow the LDS to be placed away from the pile with the laser pointed at an angled reflector plate fastened to the pile. The advantage to this setup is that it allows to both the operator and the LDS to take measurements at a safe distance from the pile. The disadvantage to this setup is that the range of displacement measured would be limited to the vertical length of the reflector plate.

LDS equipment used by Park et al., 2013a and Park et al., 2013b was the LLD-0100 model (JENOPTIK AG, Jena, Germany) with a measurement range from 0.6 to 115 feet (0.2 to 35 m) an accuracy to 0.007-inch (0.2 mm) at a sampling rate of 50 Hz.

Figure 2-8: Laser-based Reflector (R) Displacement Measurement: (a) Laser Mounted on Pile; (b) Reflector Mounted on Pile (Islam et al., 2016)

2.5.6 FIT Camera Measurement System

Bostater and Yang (2014) developed a camera measurement system (CMS) based on video images. The researchers have tracked vertical displacements of waves and recently updated the original system (Bostater et al., 2017). This system involves the following processes. A video is taken of the desired moving object(s). Individual frames are then created using special decoding software that results in converting the video sequence into images or frames. This process is accomplished by decoding the header information in the video file. The binary header contains embedded binary descriptors. The light intensity in each image or frame is then read and analyzed using a specially coded software program. Thus, for each image, variations in light intensity at a line or edge interface is obtained. Motion can be determined by tracking the color intensity differences at the line or interface that moves as a function of the pixel number. Thus, interfaces such as the edge of a paint line or a reflective line target within a series of images can be spatially tracked using a custom edge detection algorithm.

Initial camera video imaging was performed at the Saint John's Heritage Parkway I-95 Micco Interchange. A camera was set up near a pile in the shoulder of the southbound lanes of I-95 during installation. Images were taken for short durations and analyzed. Camera images taken at 30 frames per second produce 30 times 60 or 1800 frames per minute. Figure 2-9 shows highly simplified data from 4 separate images taken during driving of the 24-inch square prestressed concrete production pile. Data is shown in terms of intensity (y-axis) versus pixel number (x-axis). Higher intensity numbers being light portions of the images (gray concrete color) and lower numbers near zero as the black one-foot line marker on the pile. The blue lines are all images as the pile is moving down, with the solid line being the first image, the darker dashed blue line the second image and the lighter dashed blue line the third image. The red line is the fourth image in the sequence and shows the pile rebounding. If the pile rebound movement is to be estimated it is easiest to choose an intensity line of for example 40 and then project from the third series (light dashed blue downward portion) line to the x-axis or pixel number (approximately pixel 215 at Intensity 40). Repeating this process at the 40-intensity line for the red line downward portion line and the approximate pixel number is 200. Each pixel is about ¹/₄ mm thick therefore the rebound is 15 times ¹/₄ mm or 3.75 mm or about 1/6th inch.

Figure 2-9 Micco Road I-95 Overpass Pile Driving Reduced Camera Data with blue lines for downward pile movement and red line upward movement

2.6 Summary of Pile Measurement Systems

A summary of the relative complexity, safety and costs are shown in Table 2-3. These levels and numbers are based on the literature findings and general engineering experience. Other than the manual method all the systems evaluated are relatively complex. The complex systems all involve specialized cameras/lasers and software. As shown the safety of all systems is a concern; however, the highest safety concern is associated with the manual and high-speed line camera due to their location relative to the pile driving. All other systems reviewed are considered as a safety concern since they are typically about 32 ft (10 m) from the pile during driving.

	Relative	Relative	Estimated
Method	Complexity	Safety	Cost
Manual	Low	Very Poor	Very Low
High Speed Line Camera	High	Very Poor	> \$10,000
Digital Image Processing	High	Poor	> \$10,000
He-Cd Laser	High	Poor	> \$10,000
Inopiles PDM	High	Poor	> \$10,000
LDS	High	Poor	> \$10,000
FIT Camera	High	Poor	> \$10,000

Table 2-3 Summary of the Relative Complexity, Safety, and Costs

2.7 Pile Movement during Driving

Soils are often exposed to different forms and therefore durations of cyclic loading from either natural forces or construction activities as shown in Figure 2-10. The static loads occur over a low number of cycles; however, the various dynamic loads occur over a large number of cycles. Pile driving waves are similar in duration to those found from earthquake, traffic and machine foundations.

Figure 2-10: Classification of dynamic problems (after Ishihara, 1996)

2.7.1 Dynamic Approach: Pile-Soil Model from the Wave Equation

Soils loaded quickly, offer more resistance than soils loaded slowly. Pile driving is one of the extreme cases of fast loadings. Smith (1960) developed a discretized spring and dashpot model of a pile being driven into soils as shown in Figure 2-11. The pile driving system consists of a hammer and anvil ram, cushion material for the hammer and pile (if concrete), a pile cap, the pile, and the surrounding soils. Springs are used to represent elastic materials, while spring and dashpot combinations are used to represent elasto-plastic materials, such as soils.

Smith (1960) used a hybrid linear elastic-plastic model to depict pile load-displacement movement from a single hammer blow. Figure 2-3 shows the actual and modeled energy rebound during a single hammer cycle. The elastic compression of the soil or rock below the pile point results in an upward displacement (i.e., rebound) of the pile after the hammer blow. Rebound is typically associated with the reaction of the soil as opposed to the pile. Quake is the modeling parameter describing the soil's initial elastic movement (i.e., similar to earthquake movements) from the dynamic energy resulting from a single hammer blow (Smith, 1960). Stated another way, quake is the pile displacement when the soil behavior changes from elastic to plastic (Murrell et al., 2008). The soil damping (η) and the wave speed (v(t)) are proportional to the force or pile resistance (R(t) = $\eta * v(t)$). In this format, η has units of force per velocity. Historically, two damping coefficients have been defined for the dynamic pile soil model. Smith's damping coefficient (Js) has units of 1/velocity and the resulting pile resistance is found by including the maximum soil resistance per blow (Rsmax) as follows: (R(t) = Js * Rsmax*v(t)). The damping coefficient (Jc) as defined from the Case Western Reserve (CASE) study, (NCHRP Synthesis 253, 1997) is dimensionless, since pile impedance (Z) is included (R(t) = Jc * Z*v(t)). The impedance is found from Young's Modulus multiplied by the pile cross-sectional area and then divided by the wave speed, resulting in units of force/velocity (EA/v(t)).

Data from cyclic triaxial testing on HPR and non-HPR soils may be able to produce values for Js. Data is available from 30 cyclic triaxial tests. Each test has 6,000 or more cycles at various stress levels. This data is currently being evaluated. A sample of the results from this analysis has been written and included as Appendix F. This data is preliminary and is provided to show the current process being used to produce damping coefficients.

Dynamic testing is performed only during pile driving when real-time measurements are required. The dynamic testing system as presented in Figure 2-12, consists of: a) field testing utilizing specialized equipment such as strain gauges and accelerometers and b) pile wave signal matching software such as the CAse Pile Wave Analysis Program (CAPWAP[®]).

Figure 2-11: Pile-Soil Model for Wave Equation Analysis (Smith, 1960)

Figure 2-12: Strain Gauge and Accelerometers Mounted on Pile and (b) PDA Equipment with CAPWAP[®] (Courtesy GRL Engineers, Inc.)

The signals from the accelerometers and strain gauges, placed within 2 diameters of the pile head, are used with data acquisition in a package called the Pile Driving Analyzer[®] System PDA Software. Accelerations are integrated once to produce velocity traces versus time and a second time to produce deflections versus time. The strains are used along with the known pile properties (area and elastic modulus) to produce the force in the pile versus time at the gauge location. Based on Hooke's Law ($E=\sigma/\epsilon$), the strain (ϵ) and elastic modulus (E) are used to determine the stress (σ), and then the area of the pile is used to determine the force. PDA force and velocity versus time data from a hammer blow is depicted in Figure 2-14.

Figure 2-13: Typical PDA Pile Top Displacement versus Time Diagram from One Hammer Blow for a FDOT HPR Site (from Cosentino et al., 2010)

Figure 2-14: PDA Measured Force and Velocity versus Time from One Hammer Blow (Courtesy GRL Engineers, Inc.)

CAPWAP[®] is a software package with a signal matching procedure which primarily uses ultimate resistance values, soil damping factors and quakes in a series of equations to match

computed with measured PDA force and velocity signals. The CAPWAP[®] program has six operator adjustable variables in the computation of its force versus time curve: side quake, toe quake, side damping, toe damping, static resistance along the pile shaft, and static resistance at the pile toe.

The operator adjusts these variables to produce a match between the actual force trace and the computed force curve (Authier and Fellenius, 1980). After the measured force has been obtained for each hammer blow (Figure 2-14), engineers use the CAPWAP[®] signal matching process along with these forces to predict force versus time curves. This predicted curve can be compared to the actual force trace generated during pile driving. Figure 2-15 demonstrates five iterations of this matching process. Damping was added after the first iteration, then the capacity was increased, and finally the quakes were adjusted. This process produced a good match by iteration 5.

Figure 2-15: CAPWAP[®] Iterative Process (Courtesy GRL Engineers, Inc.)

Figure 2-13 presents typical HPR PDA data at a FDOT site. The plot, with displacement recorded in inches on the vertical axis and time recorded in milliseconds on the horizontal axis, shows a maximum displacement (DMX) of 1 inch, a digital set (dSet) of 0.27 inches, and an inspector permanent-set (iSet) of 0.11 inches. The digital set from the PDA output (DFN or dSet) is recorded over 200 milliseconds, with approximately 1.5 seconds occurring between hammer

blows for typical diesel hammers. The final pile set occurs after the digital signal has ended. This discrepancy between the dSet and iSet has caused most engineers to assume the inspector set as more reliable. Assuming that the inspector set is reliable, yields a rebound of 0.89 inches. The rebound based on dSet would be 0.73 inches.

2.7.2 Viscoelastic Behavior of Soils

Rheology is the study of the flow of substances subjected to loads or pressures. The rheological stress-strain behavior changes with time and it is dependent upon the loading and stress history. Rheological processes are time dependent responses of the soil due to long-term load application. Vyalow (1986) describes three different forms for rheological properties manifestation: creep, relaxation and deterioration of strength. Creep is characterized as a soil deformation with time due to an applied constant load. A deterioration of soil strength occurs during creep while the soil is transitioning into the stage of failure. Relaxation is the lessening of stresses that occurs when a load is applied and reduced after a given time in order to maintain a constant deformation (Vyalow, 1986). These properties can only be observed if an adequate interval of time is given, which vary for each material.

The deformation of soils after a load is applied depends on their elasticity, plasticity and viscosity properties, which are related to the interaction forces within the atoms.

Elasticity is the capability of the soil to rebound to its initial form after the forces are removed. If a body is capable of completely returning to its initial shape and volume, the deformation is called reversible and the body is referred as a Hookean solid (i.e., perfectly elastic body). The rheological equation of state for a Hookean body with perfectly elastic behavior is given by the expression below:

$$\sigma_i = E \times \varepsilon_i$$

where σ_i is the normal stress, E is Young's modulus and ε the vertical strain.

Plasticity, on the other hand, is the capability of soils to deform permanently without failing. The plastic state of a body is achieved when the maximum stress occurs (σ_{max}), called the yield point.

The third property mentioned, viscosity, is related to fluid and gas behavior. It is described by Vyalow (1986) as the resistance of motion within the body's particles, and therefore comes into play when there is movement between layers. The rheological equation of state for a Newtonian liquid (i.e., a perfect viscous liquid) defines the tangential stress (σ_i) as function of a viscous factor (η) and the derivative of strain over time ($\dot{\varepsilon}_i$):

$$\sigma_i = \eta \times \dot{\varepsilon}_i$$

The behavior of the soils due to these properties are shown on both stress versus strain and derivative of strain versus time curves. For an elastic body, the deformation recovers instantly if unloaded and do not change in time, while for viscous bodies the deformation increases with time and does not recover after the load is removed.

The combination of elastic and viscous properties of the soils is called viscoelasticity, and it introduces a time-dependent response in addition to the elastic deformation to the soil behavior. There are numerous combinations of elastic and viscous components used to model rheological materials such as soils, and asphalt concrete. The mechanical models used to describe them use elastic springs, characterized by the Young's modulus (*E*), combined with viscous dashpots, characterized by a viscous factor (η), in series or parallel.

The Maxwell model uses a spring and a dashpot placed in series. When a constant strain is applied to a material the corresponding stress decreases or releases with time (Vyaloy, 1986). In this model, the system representing the pile being driven consists of a spring and a dashpot connected in series as shown in Figure 2-16:

Figure 2-16 Maxwell Model

The Kelvin-Voigt model, used when a material, i.e., the pile, experiences the same elastic and viscous moment during load and the strain changes with time. Smith (1960) used the Kelvin-Voigt model in his wave equations analysis of piles. In this model, the system representing the pile being driven consists of a spring and a dashpot connected in parallel as shown in Figure 2-17:

Figure 2-17 Kelvin-Voigt Model

The rheological equation of state for the Kelvin-Voigt model is given by:

$$\sigma = \mathbf{E} \times \boldsymbol{\varepsilon} + \boldsymbol{\eta} \times \dot{\boldsymbol{\varepsilon}}$$

where E is the elastic modulus, ε is the strain, η is the viscous factor, with units of stresstime, and $\dot{\varepsilon}$ the derivative of strain with respect to time.

2.7.3 Damping

Damping is related to the loss of energy during cyclic loading. It is represented by a dashpot with a damping coefficient. There are a variety of models in the literature referring to damping factors with different units of measure. Two in particular will be described in detail due to their use by the software CAPWAP®: CASE's and Smith's damping factors.

CASE's damping factor (J_c) relates the load applied (R(t)) by the hammer blow, the pile impedance (Z) and the wave velocity (c) in the pile. During cyclic triaxial tests, the load applied lasts a tenth of a second and then goes to zero, therefore, the load to be used in this analysis will be the maximum load (Rmax) applied during the cycle time. The equation developed by CASE is:

$$J_{\rm c} = \frac{R(t)}{Z \times c}$$

Impedance (Z) is defined as the proportionality constant between the applied force due to the hammer impact and the particle velocity (c) at any point throughout the pile. Z is related to the pile's area, length, material and density. When Z increases the pile particle velocity decreases. Pile impedance is calculated through the following equation:

$$Z = \frac{EA}{c} \quad \left(lb.\frac{s}{in}\right)$$

 J_c is dimensionless, as shown by the following dimensional analysis:

$$[J_c] = \frac{lb}{(\frac{lb}{in^2} \times \frac{in^2}{\frac{in}{s}}) \times (\frac{in}{s})} = \text{dimensionless}$$

A range of values related to the soil type is presented in the Pile Driving Contractors Association (PDCA) Manual (Hannigan et al., 1998) reproduced in Table 2-4. These dimensionless damping coefficients range from 0.05 to 0.7, depending upon the soil type. Florida sites generally have silty fine sands with clays, and therefore would produce CASE damping factor between 0.15 and 0.25.

Soil Type at Pile Toe	Original CASE Damping Correlation Range, 1975	Updated CASE Damping Correlation Range, 1996	
Clean Sand	0.05 to 0.20	0.10 to 0.15	
Silty Sand, Sand Silt	0.15 to 0.30	0.15 to 0.25	
Silt	0.20 to 0.45	0.25 to 0.40	
Silty Clay. Clay Silt	0.40 to 0.70	0.40 to 0.70	
Clay	0.60 to 1.10	0.70 or higher	

Table 2-4 CASE Damping Coefficient (after Hannigan et al., 1998)

Smith's damping factor (J_s) is defined as the ratio between the load applied over time (R(t)) to the product of the maximum load applied (R_{smax}) and the wave velocity (c) due to the hammer blow:

$$J_s = \frac{R(t)}{R_{smax} \times c}$$

 J_s has units of time over displacement, as shown:

$$[J_s] = \frac{lb}{lb \times (\frac{in}{s})} = s/in$$

Both damping factors can be related to each other through the following relationship:

$$J_{s} \times R_{smax} = J_{c} \times \frac{E \times A}{c}$$
$$J_{c} = \frac{J_{s} \times R_{smax} \times v(t)}{E \times A}$$

2.7.4 Pile Driver Analyzer

The Pile Driver Analyzer (PDA) method was developed at Case Western Reserve University in the 1960s (Hussein and Goble, 2012). The main purpose of instrumenting a pile with PDA sensors is to use the force and impact wave recorded during driving to determine the static resistance of the pile. In order to determine the pile capacity, sets of strain gauges and accelerometers are mounted near the top of the pile. During hammer impact, the strains are used to determine force (F) at the sensor location. The force is found knowing the pile elastic modulus (E), and cross-sectional area (A), which are input into Hooke's law (i.e., $E=\sigma/\epsilon$, $\sigma=F/A$ therefore, $F=\sigma x A$). During hammer impact, the accelerometer signal is numerically integrated to obtain the particle velocity at the location of the sensor. A second numerical integration of the acceleration produces pile movement at the sensor. These signals are recorded continuously throughout the driving process.

Typical PDA-CASE method pile force and velocity versus time data for one hammer blow is shown in Figure 2-18. Since the wave travels in two directions it changes from positive to negative as shown. Knowing the pile elastic modulus and mass density, the stress wave speed (c) can be calculated as (E/ρ) 1/2. The wave speed (c) traveling up and down the pile is a constant, but it may also be estimated using the known pile length (L) and the time (t) required for the stress wave to travel down and up the pile (i.e. a distance of 2L). In summary, the wave speed can be calculated or estimated as follows:

$$c = \left(\frac{E}{g}\right)^{1/2} \cong \frac{2L}{t}$$

PDA-CASE method software also calculates the pile's dynamic modulus (Ed) and the wave speed, based on the pile characteristics (area, length, material and density), and the data collected by the sensors. The data from PDA can be exported to other software in order to be analyzed. Figure 2-19 shows the typical export data from PDA.

Figure 2-18 Typical PDA Pile Force (Solid Line) and Velocity (Dashed Line) versus time, including 2L/c time along pile (Rectangular shape)

Date	Time	LP	EL	BN	EL	BPM		
		feet	feet		feet	blows/min	ute	
12/21/12	13:12:14	31	-10.58	1	-10.58	1.9		
12/21/12	13:12:44	32	-11.58	2	-11.58	1.9		
12/21/12	13:12:46	32.5	-11.58	3	-12.08	42.6		
12/21/12	13:12:47	33	-12.58	4	-12.58	52		
FMX	VMX	EMX	FVP	DMX				
kips	feet/second	kip-feet		inches				
286	10.3	19.5	1	12.01				
376	8.5	29.2	0.9	12.01				
454	5.7	21.6	1	6				
416	5.5	14.7	0.9	6				
SET	DFN	CSX	CSI	тѕх	AMX	SFT	EBR	jc
inches	inches	ksi	ksi	ksi	g's	kips	kips	
12	12.01	0.9	1	0.2	12	0	-1	0.5
12	12.01	1.2	1.3	0.3	29	0	0	0.5
6	6	1.4	1.6	0.7	51	0	0	0.5
6	6	1.3	1.3	0.7	28	0	0	0.5

Figure 2-19 Data exported from PDA

2.8 CAPWAP[®] Software

The Case Pile Wave Analysis Program (CAPWAP[®]) is a software developed to estimate the soil parameters through an iterative signal matching or reverse analysis procedure.

PDA data collected by the sensors can be used to characterize the force and velocity near the top of the pile, but the dynamic and static resistance below the pile head are unknown (Pile Dynamics, Inc., CAPWAP Background Report).

If the pile capacity is limited to the end bearing (i.e., if the pile is on a fixed support condition at its toe), the forces can be easily calculated. However, when friction occurs, it is not simple to define the capacity throughout the pile shaft and toe. CAPWAP® analysis produces an estimate of the friction distribution and the end bearing based on the matching process.

Usually, it takes a relatively large pile displacement to completely mobilize the toe bearing resistance and a relatively small displacement to mobilize the side friction. During pile rebound, any upward movement would significantly decrease the pile toe bearing capacity.

CAPWAP[®] uses the force and velocity measurements to estimate the wave speed up the pile and capacity. The matching quality percentage (MQ) represents the difference between the wave up calculated and the wave up measured by PDA.

The CAPWAP® soil model is composed of elasto-plastic and linear viscous components. The three main unknowns of the model are the ultimate static resistance, the elastic soil deformation or quake, and the damping coefficient, which are related to multiple parameters. An analysis is complete when all three unknowns are estimated for a certain number of points along the pile shaft and the pile toe.

2.8.1 Key CAPWAP[®] Parameters

CAPWAP[®] uses different parameters to describe the pile and soil behavior during the loading and unloading process. The parameters critical to this analysis will be described here, the complete nomenclature and definitions can be found in the CAPWAP[®] Report (Pile Dynamics, Inc., CAPWAP[®] Background Report, 2006).

The first key CAPWAP[®] parameter is the shaft unloading level multiplier (UN). It is related to the resistance of the soil around the shaft when the pile rebounds or is unloaded. UN ranges between 0 and 1, and is set as zero if there is no downward shaft resistance and one if the upward shaft resistance is the same as the downward resistance. UN does not apply to the pile toe, because the toe cannot have any downward resistance when the pile is moving up, because

the soil loses contact with the pile. During rebound, UN can still vary from 0 to 1 on the pile shaft, according to the soil resistance during the upward movement.

Two additional key parameters are the skin or toe unloading quake multipliers (CS and CT respectively). The slope of the resistance versus displacement curve, which represents the stiffness of the soil, can be different for the loading and unloading phases. CS and CT are multipliers used to relate the unloading stiffness to the loading stiffness. If CS or CT are equal to one, the soil stiffness around the shaft or the toe is the same during the loading and unloading processes.

2.8.2 The Pile Model

CAPWAP[®] divides the pile into Np uniform segments. Initially Np is set as 3.3 ft (1 m) segments; however, it can be changed if needed. The results presented in this report were based on 6.6 ft (2 m) shaft segments. For the constant cross section prestressed concrete piles analyzed, the wave travel times for all pile segments are equal, and the shaft resistance is divided among the segments. Each pile segment (i) has a specific area (Ai), density (pi), elastic modulus (Ei), wave speed (ci), impedance (Zi) and stiffness (ki).

The force-wave generated by the hammer impact produces a force wave (Fd) traveling down the pile and a reflective force (Fu) traveling up the pile. These forces can be determined using the pile impedance (Z) and the velocity of the downward traveling wave (\dot{u}_d) and the upward traveling wave (\dot{u}_u) as:

$$F_d = Z\dot{u}_d$$
$$F_u = Z\dot{u}_u$$

The total force (F) at any point throughout the pile can be determined by the superposition of the upward and downward forces:

$$F = F_d + F_u$$

Internal pile damping is defined by CAPWAP[®] as a fraction of the total force up and down the pile, called Pi. It depends on the pile material, and it is preset as 1% for steel piles and 2% for concrete piles. Pi is the same for all pile segments (i, j) and it can be changed within the

CAPWAP® configurations. The dampened wave forces for segment i, j (Fi,j*) values can be calculated as follows:

$$F^*_{u_{i,j}} = F_{u_{i,j}} - P_i(F_{u_{i,j}} - F_{u_{i,j+1}})$$
$$F^*_{d_{i,j}} = F_{d_{i,j}} - P_i(F_{d_{i,j}} - F_{d_{i,j-1}})$$

2.8.3 Soil Damping

The soil damping is directly related to the velocity in which the pile is being driven. According to Smith's wave equation, the viscous or dynamic force for each soil segment (Rdk) depends upon the segment velocity (\dot{u}_i) , the temporary static resistance (Rsk) and Smith's dimensional damping factor Jsk, which has units of 1/velocity according to:

$$R_{dk} = J_{sk} \dot{u}_i R_{sk}$$

However, for signal matching, a linear coefficient is more convenient, because the viscous force does not depend on the segments' static resistance. Therefore, Smith's damping is replaced by a viscous factor Jvk, with units of force/velocity, as shown in the following equation:

$$R_{dk} = J_{\nu k} \dot{u}_i$$

By default, CAPWAP[®] calculates the damping forces according to the linear viscous approach. However, it is possible to manually change the settings in order to use Smith's approach or a mix of both linear and Smith's.

Once the viscous factor (Jvk) is determined, Smith's (1960) damping can be computed by setting the temporary static segment resistance (Rsk) equal to the ultimate soil resistance (Ruk) using the Smith-viscous approach:

$$J_{sk} = \frac{J_{vk}}{R_{uk}} \qquad (units: \frac{1}{velocity})$$

CASE's Method (1974) uses the pile impedance (Z) to define a non-dimensional damping coefficient, called the CASE damping factor. CAPWAP[®] calculates separate damping factors for shaft and toe (Jc and Jc,toe), and produces an overall CASE's Damping Factor to be used in the CASE's Method. Case's damping factor is defined as the summation of either the

Smith (1960) shaft damping factors per segment ($\sum J_{\nu k}$) or Smith (1960) toe damping factor divided by the pile impedance:

$$J_{c} = \frac{\sum J_{vk}}{Z} \quad (dimensionless)$$
$$J_{c,toe} = \frac{J_{vk}}{Z} \quad (dimensionless)$$

3 Site Descriptions

Two groups of test sites were used for this research. One group was used for the comparisons between PDA, PDM and CMS equipment, while the second group was used for the visco-elastic damping coefficient comparisons. The description of each group was separated and are presented within this chapter.

3.1 PDM CMS PDA Site Descriptions

The sites chosen for the comparisons between PDM, CMS and PDA equipment along with pertinent site information is presented. The task objective was to locate a minimum of 5 sites for the comparisons.

The sites were a mixture of high rebound and no rebound sites in Central and Northeast Florida. Six sites where 24-inch square prestressed concrete piles were installed were selected for the PDM evaluation. Testing included evaluations with both the PDM and camera monitoring system (CMS) equipment. The focus was to use sites that had large diameter prestressed concrete piles driven with open ended diesel hammers at sites with and without pile rebound. CMS evaluations were performed on piles at all six sites. In addition, two sites included Standard Penetration Testing (SPT) with both PDM and CMS equipment. The sites are:

- Berth 8 Port Canaveral North Cargo in Brevard County (*Port Canaveral*)
- Baldwin Bypass over CSX Railroad Crossing in Duval County (*Baldwin Bypass*)
- SR 15 (US 17) over Dunns Creek in Putnam County (*Dunns Creek*)
- Floridian Place extension in Orange County (*Reedy Creek*)
- Ellis Road Interchange over I-95 in Brevard County (*Ellis Overpass*)
- Wekiva Parkway in Lake County (*Wekiva Parkway*)

The descriptions of the work performed at each site include; a site location map, test pile locations, test boring profiles and types of research testing conducted. Table 3-1 is a summary of the PDA, CMS and PDA testing for both the pile and SPT testing. Two locations within the

Wekiva Parkway site were used for SPT PDM and CMS evaluations. One location within Dunns Creek was used for the SPT, PDM and CMS evaluations and a second location was used for the test pile PDM and CMS evaluations. Due to FDOT statewide travel restrictions after Hurricane Michael, which were in effect from late October 2018 until February 2019 SPT testing was limited to three borings at two sites. Port Canaveral was chosen as the initial PDM evaluation site and therefore, no CMS or PDA data was produced. There were no test piles installed at the Port Canaveral site. Reedy Creek was chosen as a non FDOT site due to its close proximity to campus and the fact that this site was not a high rebound site even though it is located in Central Florida. Dunns Creek and the Baldwin Bypass were both high rebound sites while the Ellis Road site was a non-rebound site.

Project Name	Rebound	Pile or SPT	PDM Data	Camera Data	PDA Data
Port Canaveral	No	Pile	Yes	N/A	N/A
Baldwin Bypass	Yes	Pile	No	Yes	Yes
Dunns Creek	Yes	Pile	Yes	Yes	Yes
Dunns Creek	Yes	SPT	Yes	Yes	N/A
Reedy Creek	No	Pile	Yes	Yes	Yes
Ellis Overpass	No	Pile	Yes	Yes	Yes
Wekiva Parkway	Yes	SPT	Yes	Yes	N/A

Table 3-1 Summary of PDM-CMS-PDA Testing

3.1.1 Port Canaveral

Several piles were evaluated with the Inopiles PDM equipment during the installation of the piles at North Cargo Berth 8 at Port Canaveral. These tests were preliminary tests with the PDM equipment that allowed the research team to work through the start-up logistics of properly using this equipment. The CMS equipment was not used at this site. A general site location map is shown in Figure 3-1. There were no test piles installed for North Cargo Berth 8, therefore, no PDA data is available.

Over 400 piles were installed at North Cargo Berth 8. A foundation layout plan is shown in Figure 3-2. The piles tested by our research team were in the first two rows closest to the water. Boring TH-FFB4 in Figure 3-3, shows the soils encountered to a depth of about 114 feet (Elevation -114). The picture in Figure 3-4, shows a typical location for these preliminary PDM tests.

Figure 3-1 Google Earth Pro® Map of North Cargo Berth 8, Port Canaveral, Florida

Figure 3-2 Plan View of Pile Installation for North Cargo Berth 8

			rc		na s, Ir	ar	ו		В	OF	RING LOG	FFB4 3 ft.	u	
PRO. CLIEI BORI COUI DATE WATI WATI REM	CLIENT Canaveral Port Authority ELEVATION 0.0 feet (MLW) BORING LOCATION N 1,484,468; E 777,034 BORING TYPE COUNTY Brevard CASING TYPE DATE COMPLETED 10/29/10 DRILLER/RIG TIME TIME WATER TABLE AD: WATER TABLE AD: DATE Standard Penetration Test Lab Data													
u	£	Standard F AST	Penetra M D-15	tion Test 86		1	Lab	Data				Ê	.c.	
Elevati	Depth (Blows/ 6 in	N Value	Sample Number	NM (%)	-200 (%)	LL (%)	PI (%)	Den. (pcf	Su (UU) (psf)	Soils Descriptions and Remarks	Depth (Graph Log	
	-										WATER	-		
-5.0	5	2-2-2	4	1	42.2	34.6					- Greenish gray silty fine sand (SM)	1		
		1-2-1	3	2							Greenish gray silty fine sand (SM) with few shell	t		
	-	1-1-2	3	3							 Greenish gray clayey fine sand (SC) with few shell 	-		
-10.0	10	2-2-2	4	4	48.6	39.4	36	16	1		- Graenish area clause fine cand (SC)	Ŀ		
	-	1-0-1	1	5							-	ŀ		
	-	1-2-3	5	6							-	F	N	
-15.0	15	3-2-3	5	7							Greenish gray silty clayey fine sand (SM/SC) with few shell	-	11	
-20.0	20	4-3-1	4	8	41.3	5.1					Greenish gray fine sand with silt (SP-SM)	-		
		2-3-7	10	9							9 -	t		
-25.0	25										Brown silty fine sand (SM) with some shell	-		
-30.0	30	7-12-14	26	10							- Greenish gray silty fine sand (SM) with trace shell -	-		
-35.0	35	6-5-3	8	11	51.0	46.6					- Greenish gray silty fine sand (SM)	-		

Figure 3-3 Test Boring TH-FFB4 at North Cargo Berth 8

			Asso		na s, In	ar	1		В	O	RING LOG BORING NO: TH-F TOTAL DEPTH: 114.3 SHEET 2 OF 4	FFB4 I ft.	H
PROJ	NT _C	Propose	d NCB Port A	5 and N uthority	CB8 B	korings	3				FILE NO. 10-13-0228 ELEVATION0.0 feet (MLW) POPULO TYPE		
BOR	NGL	Standard F	Penetral	404,400 tion Test); E /	11,03	• Lab	Dete			BORING TIPE	T	_
Elevation	Depth (ft)	AST 9 9 9	N Value N Value	Sample Number	NM (%)	-200 (%)	LLL (%)	PI (%)	Dry Den. (pcf)	Su (UU) (psf)	Soils Descriptions and Remarks	Depth (ft)	Graphic Log
	-										Greenish gray silty fine sand (SM) (continued)	-	
-40.0	40	2-4-1	5	12							Mostly Shell	-	
-45.0	45	1-0-1	1	13								-	
-50.0	50	6-9-4	13	14	36.4	38.5					- - - Greenish gray clayey fine sand (SC) with trace shell - -	-	
-55.0	55	5-6-7	13	15								-	
-60.0	60	4-5-5	10	16								-	
-65.0	65	3-5-4	9	17							Mostly Shell	-	
-70.0	- 70 -	3-4-4	8	18							 Light greenish gray clayey fine sand (SC) with little shell	-	
	-											F	11

Figure 3-3 (cont.) Test Boring TH-FFB4 at North Cargo Berth 8 Page 2 of 4

			rc		ma s, Ir	ar	1		В	O	RING LOG BORING NO: TH- TOTAL DEPTH: 114.3 SHEET 3 OF 4	FFB4 3 ft.	4
PROJ CLIEN BORI	IECT	Proposed anaveral F	NCB Port A	5 and N uthority 484,468	CB8 E	3oring:	4				FILE NO. 10-13-0228 ELEVATION0.0 feet (MLW) BORING TYPE		
		Standard P	enetral	tion Test			Lab	Data					
Elevation	Depth (ft)	Blows/ 6 in 91	N Value	Sample Number	NM (%)	-200 (%)	LL (%)	PI (%)	Den. (pcf)	Su (UU) (psf)	Soils Descriptions and Remarks	Depth (ft)	Graphic Log
-75.0	75	4-5-4	9	19	36.2	40.1					Light greenish gray clayey fine sand (SC) with little shell (continued)	-	
-80.0	80	13-9-17	26	20							- - -		
	-	7-9-13	22	21							Greenish gray clayey fine sand (SC) with little shell		
-85.0	85	12-17-7	24	22							• • •		
-90.0	90	6-7-9	16	23							Gray cemented sand and shell fragments to 1-inch size, calcareous, phosphatic	-	
-100.0	95 - - - - - - -	4-5-6	11	24	27.2	36.4					• • • • • • • • • • • • • • • • • • •	-	
	-	4-4-6	10	25	-						 Greenish gray clayey fine sand (SC) 	-	
-105.0	105											-	
-110.0	110	13-29-16	45	26							Gray cemented sand and shell fragments to 1/2-inch size, calcareous, phosphatic	-	

Figure 3-3 (cont.) Test Boring TH-FFB4 at North Cargo Berth 8 Page 3 of 4

			rc		na s, Ir	ar	1		В	OF	RING LOG BORING NO: T TOTAL DEPTH: 11 SHEET 4 OF 4	H-FFB4 4.3 ft.	4			
PRO	JECT	Proposed anaveral F	I NCB Port A	5 and N uthority	CB8 E	Borings	5				FILE NO. 10-13-0228 ELEVATION _0.0 feet (MLW)		_			
BOR	ING LO	OCATION	N 1,	484,468	3; E 7	77,03	4				BORING TYPE					
~	_	Standard P AST	Venetra M D-15	tion Test 86			Lab	Data								
Elevation	Depth (ft)	Blows/ 6 in	N Value	Sample Number	NM (%)	-200 (%)	LL (%)	PI (%)	Den. (pcf)	Su (UU) (psf)	Soils Descriptions and Remarks	Depth (ft)	Graphic Log			
	-	15-22-27	49	27							Gray cemented sand and shell fragments to 1/2-inch size, calcareous, phosphatic (continued)	-				
											BORING TERMINATED AT 114.3 FEET BELOW GROUND SURFACE.					

Figure 3-3 (cont.) Test Boring TH-FFB4 at North Cargo Berth 8 Page 4 of 4

Figure 3-4 North Cargo Berth 8 Pile Driving and Preliminary PDM Testing

3.1.2 Baldwin Bypass

The Google Earth Pro image shown in Figure 3-5 depicts an overview of the Baldwin Bypass. At this site all the prestressed concrete piles were PDA instrumented and tested. Our research team used the Inopiles PDM and CMS equipment to monitor Pile 1 at End Bent 4 northbound during extremely poor weather conditions. Figure 3-6 shows Baldwin Bypass End Bent 4 North and South Bound Pile Installation Plan while Figure 3-7 is a photo of the PDA/PDM/CMS testing. Rebound occurred during driving from approximately 40 to 48 feet. Note that the PDM equipment failed to produce data at this site and that the weather conditions were extremely poor with heavy rains all during testing. Figure 3-8 is the associated test boring (21A) near the test pile.

Figure 3-5 Google Earth Pro[®] Image of Baldwin Bypass over the CSX North-South Railroad and I-10

Figure 3-6 Baldwin Bypass End Bent 4 North and South Bound Pile Installation Plan, Note All Piles PDA Dynamic Testing Piles

Figure 3-7 Photo of Baldwin Bypass North Bound End Bent 4 Pile 1

Figure 3-8 Baldwin Bypass Test Boring 21A near Pile 1 End Bent 4

3.1.3 Dunns Creek

One test pile and one SPT test were monitored at Duns Creek with both PDM and CMS equipment. Pile 10 at Pier 4 was the monitored test pile, while the SPT that was monitored was placed about 50 feet from its location. Figure 3-9 is a Google Earth Pro image of the Dunns Creek testing region. Figure 3-10 is a foundation plan near station 436+37, while Figure 3-11 is the test boring (BR-3) associated with the test pile. Pile rebound in the 1 to 1.5-inch range occurred throughout Dunns Creek at depths between about 65 and 80 feet.

Figure 3-9 Google Earth Pro[®] Image of SR-15 (US-17) Over Dunns Creek Testing Region

Figure 3-10 Dunns Creek Testing Region near Station 436+37

Figure 3-11 Dunns Creek SPT BR-3 Test Boring Station 136+38

3.1.4 Reedy Creek

At Reedy Creek Floridian Place Extension in the Reedy Creek Improvement District (RCID) one Test Pile was monitored with both PDM and CMS equipment. The test pile was at end bent 1 pile number 12 near soil boring 6. Information from DRMP Job No. 15-0260.001 and Professional Services Industries (PSI) Inc. Project No. 07571393 was used to complete this section (PSI, 2016). No rebound was encountered during pile driving. The general site location along with the approximate bridge location are shown in Figure 3-12 and Figure 3-13. The foundation plus boring location plan is shown in Figure 3-14, while the soil profile is depicted in Figure 3-15.

Figure 3-12 Floridian Place Extension RCID General Site Location (PSI, 2016)

Figure 3-13 Floridian Place Extension RCID Approximate Bridge Location (PSI, 2016)

Figure 3-14 Reedy Creek Foundation and Soil Boring Location Plan

Figure 3-15 Reedy Creek Soil Boring 6 Profile

3.1.5 Ellis Road

Test pile 8 at bent 1 along the Ellis Road I-95 Overpass along Bridge number 700239 was monitored with both the PDM and CMS equipment. It was located at station 77+14.90 along the centerline of the roadway. There was minimal rebound in excess of 0.25 inches from approximately 25 to 32 feet, although the PDA DMX, set information indicated about 0.20 inches throughout driving. A Google Earth Pro image of the Ellis Road Overpass is shown in Figure 3-16, while the foundation plan at bents 1 through 3 is shown in Figure 3-17.

Figure 3-16 Google Earth Pro Image of Ellis Road Overpass

Figure 3-17 Ellis Road Overpass Bridge 700239 Foundation Plan at Bents 1 through 3

Two nearby test borings (B-1 & B-4) are shown in the vicinity of pile 8 in Figure 3-18 and Figure 3-19. Figure 3-20 shows a photograph of the test pile.

Figure 3-18 Ellis Road Overpass Boring B-1 40 feet left of Test Pile 8

Figure 3-19 Ellis Road Overpass Boring B-4 54 feet right of Test Pile 8

Figure 3-20 Photo of Ellis Road Overpass Test Pile 8 at Bent 1

3.1.6 Wekiva Parkway

Three different locations were tested at Wekiva Parkway. A significant amount of rebound occurred during installation of the test piles. A Google Earth Pro image of the site which also depict the testing locations is shown in Figure 3-21.Two locations had SPT Borings videoed and monitored with the PDM plus CMS while the third had the CMS videoed on a test pile. A Google Earth Pro image of the CMS test plie location is shown in Figure 3-22. The test pile was located at bridge 110118 pier 8 PDA test pile 1 at station 919+95.19 (See Figure 3-23). The two SPT locations were at WLC 2 Station 833+33.1 near test pile 3 at bent 37 and WLC 3 Bridge 110113 near station 1239+20.05 at end bent 2.

Figure 3-21 Google Earth Pro® Image of Wekiva Parkway SR-46 Improvement

Figure 3-22 Google Earth Pro[®] Image of Wekiva Bridge 110118 Pier 8 Pile 1Testing Region used for CMS Evaluation

Figure 3-23 Wekiva Bridge 110118 Detailing Pier 8 PDA Test Pile 1 Layout at Station 919+95.19

Figure 3-24 Wekiva Bridge 110118 Test Boring WR-WB8 at Station 919+95.19

Figure 3-25 Photo of Wekiva Bridge 110118 Pier 8, Test Pile 1 with black paint for CMS Evaluation

Figure 3-26 Google Earth Pro[®] Image of Wekiva Parkway WLC 2 SPT/PDM/CMS Testing Region

Figure 3-27 Wekiva Parkway Pile and SPT/PDM/CMS Test Boring Plan at WLC 2

Figure 3-28 Wekiva Parkway WLC 2 Test Boring SPT/PDM/CMS WL2-B60 Station 833+09

Figure 3-29 Photo of FDOT SMO Drill Rig used for SPT/PDM/CMS WLC 2 near Station 833+09 testing

Figure 3-30 Google Earth Pro[®] Image of Wekiva Parkway WLC 3 SPT/PDM/CMS Testing Region near Station 1239+20

Figure 3-31 Wekiva Parkway WLC 3 SPT/PDM/CMS Testing Region near Station 1239+20

Figure 3-32 Wekiva Parkway WLC 3 SPT/PDM/CMS Test Boring WLC3-SR 2 near Station 1239+20

Figure 3-33 Photo of FDOT SMO Drill Rig used for SPT WLC 3 near Station 1239+20 testing

3.1.7 Summary

In summary, the research team with cooperation from Patrick Hammond Project Manager of the Canaveral Port Authority, was able to conduct preliminary PDM tests on two PCP piles at North Cargo Berth 8, in Port Canaveral. This preliminary work allowed the team to subsequently conduct tests at four FDOT projects (Baldwin Bypass, Dunns Creek, Wekiva Parkway, and Ellis Road Overpass) along with the Reedy Creek site, which we coordinated through Herb Raybourn the Manager of Disney's Environmental Permitting Department. Not only were PDA instrumented test piles evaluated, but SPT drill rods were also evaluated at three locations within two of the sites (Dunns' Creek and Wekiva Parkway). The research team was also able to collect the required site information from all six locations.

GRL Engineers, Inc., PDA data was collected at the Baldwin Bypass, Dunns Creek, Ellis Road Overpass, and Reedy Creek sites, while Smart Pile PDA data was obtained from the Wekiva Parkway site. PDM data collection were attempted on all sites; however, equipment problems prevented successful collection at Baldwin Bypass. CMS data were successfully collected at all sites when it was deployed.

3.2 Visco-elastic Evaluation Sites

Five sites in Florida were evaluated using Pile Driving Analyzer (PDA), Standard Penetration Tests (SPT), and CT Tests. Figure 3-34 shows the site location. One site (Osceola Parkway) was evaluated only using CT Tests due to the lack of data. The sites include:

- SR-417 & International Parkway (417 & International), located in Seminole County;
- Saint John's Heritage Parkway (Heritage Pkwy) in Brevard County;
- I-10 & Chaffee Road (Chaffee Rd) in Duval County;
- Osceola Parkway (Osceola) in Osceola County;
- I-4 & US-192 (I-4 & 192) in Osceola County and
- Ramsey Branch in Walton County.

Figure 3-34 Site locations

The list of tests performed at each location is presented in Table 3-2. It indicates that CT tests were conducted at all six sites, while PDA and SPT data were obtained from four of those sites.

Table 3-2	Test	Sites	Eva	luated

Site	PDA Test	SPT Test	CT Test
SR 417 & International Parkway			\checkmark
Saint John's Heritage Parkway	\checkmark	\checkmark	\checkmark
I10 & Chaffee Road	\checkmark	\checkmark	\checkmark
I4 - US192	\checkmark	\checkmark	\checkmark
Ramsey Branch	\checkmark	\checkmark	\checkmark
I-4 Osceola Parkway			\checkmark

An overview of SPT borings ground surface or beginning and end elevations is given in Table 3-3.Thirteen test borings were completed for five of the six sites.

	SPT Boring	Ground Surface	Boring Termination
Site	Designation	Elevation (ft)	Elevation (ft)
417 & International	B-1	72.3	-22.7
417 & International	B-2	72.3	-17.7
417 & International	PD&EB1	75.5	-19.5
417 & International	PD&EB2	76	-19
Heritage Parkway	TH5	25	-124.5
Heritage Parkway	TH6	20	-104.5
I10 & Chaffee	B-2	63.08	-36.42
I4 - 192	B-27	90.12	-109.88
I4 - 192	B-39	109.6	-70.4
I4 - 192	B-40	108.6	-76.4
I4 - 192	B-4 1	90.2	-89.8
Ramsey Branch	B- 1	3	-116
Ramsey Branch	B-3	1	-128.5

Table 3-3 SPT Borings Description

Table 3-4 shows the PDA data overview, with the test pile designation plus the ground surface and ending PDA collection elevations. Seventeen PDA test piles were evaluated. All PDA test piles presented were used for CT evaluation, while only the ones marked with * were used for CAPWAP[®] evaluation. Appendix E contains plots describing the six sites.

Site	Test Pile	Beginning Elevation of Ending PDA collection (ft)	Ending Elevation of PDA collection (ft)
417 & International	EB1P14*	66.7	0.8
417 & International	EB2P5*	51.28	0.1
Heritage Parkway	EB1P1*	2.06	-89.9
Heritage Parkway	EB5P1*	-1.04	-81.0
Heritage Parkway	IB2P10	-18.96	-82.8
Heritage Parkway	IB3P1*	-9.25	-91.3
Heritage Parkway	IB4P10*	-10.58	-91.8
I10 & Chaffee	PR2PL9*	31.89	-16.0
I4 - 192	BD EB1P3	70.69	-1.2
I4 - 192	P6P16	63.13	-4.8
I4 - 192	P7P10	65.55	-6.5
I4 - 192	P8P4*	70.11	-1.9
Ramsey Branch	EB1P1*	-46.63	-80.5
Ramsey Branch	EB1P2	-31.12	-70.6
Ramsey Branch	EB1P3*	-51.73	-71.6
Ramsey Branch	EB4P5*	-23.07	-104.8
Ramsey Branch	EB5P2*	-21.72	-78.6

Table 3-4 PDA Test Piles Description

*Used for CAPWAP® evaluation

4 Chapter 4 CMS, PDM, and CT Testing and Evaluation Procedures

The basic equipment, set-up procedures and initial evaluations for the Inopiles Pile Driving Monitor (PDM) and the Florida Tech camera measuring system (CMS) systems are presented, followed by the evaluation procedures used for the visco-elastic analysis from CT results. Appendix D, details the CMS testing procedures, while Appendix H supplements the PDM information below with additional recommendations to help during testing.

4.1 PDM Initial Evaluation and Setup

4.1.1 Equipment

Inopiles supplies a schematic for the PDM set up which includes a table of active (or measuring) zone heights versus offset distance from object (i.e., typically a pile). The measuring zone is a vertical distance up from a horizontal line projected onto the object up at an angle of 2.6 degrees as shown in Figure 4-1. The PDM should be placed from about 20 to 80 feet (5.5 to 25 m) from the pile to produce active testing zones between approximately ³/₄ to 3.75 feet (0.25 and 1.13 m) They show the PDM being placed on a flat surface and a sand filled black leather bag, which is designed to keep the PDM level during use.

Figure 4-1 Schematic of Inopiles Operation within Active Zone

The Inopiles PDM in the case, leveling bag and the accompanying Surface Pro tablet are shown in Figure 4-2. Note that the power requirements for the PDM included an Australian plug, while the Surface Pro[®] required a European plug. These differences required special purchases for charging and operation in the US. The PDM data acquisition and reduction software, which runs on the Surface Pro[®] and can be configured for a laptop, allows for the creation of reports for each set of tests within an active zone. Metric or English units may be selected by the user.

Figure 4-2 Inopiles PDM in Case, Leveling Bag, and Surface Pro®

4.1.2 Preliminary Testing

A group of PDM tests were performed in several locations on and near the Florida Tech campus to allow for the research team to fully understand its operation. Several of these locations are shown in Figure 4-3. This testing was followed by field testing at six sites in the central and northeast regions of Florida.

Figure 4-3 Various PDM Preliminary Testing Locations

4.1.3 PDM Lab Tests

4.1.3.1 Learning the PDM

To initially understand the PDM operation, a series of lab tests were conducted. The first test consisted of driving a 36-inch metal ruler into loose sand that was placed in a 5-gallon bucket. A 2-pound sledge hammer was used to simulate hammer blows and the ruler was lightly tapped with the hammer to simulate driving. PDM was placed 17.32 feet from the ruler. This horizontal distance produced an active zone height of 0.79 feet. Deflection data was recorded as eight hammer blows were conducted. An arbitrary value of 50 feet for testing depth, shown as

penetration, was set within the software during this trial. The metal ruler was able to be driven for seven of the eight blows, before it hit the bottom of the bucket during blow number 8.

The data for one of the lab tests in the bucket of sand are shown as a three page report generated by the PDM software as Figure 4-4, Figure 4-5, and Figure 4-6. Note several trials were conducted and are included in Appendix A. The three-page report shown includes two plots (Pages 1 and 3) and a table (page 2). Figure 4-4 shows the deflection versus blow number for the selected blows. The maximum displacement (DMX) is shown at the top of the blow and permanent SET shown at the base of a blow (See Figure 4-4). An examination of the data for blow number 1 shows a SET of 0.35 inches. The tabulated data, with set, rebound (i.e. DMX-SET), velocity (of the pile or rod being driven) and penetration (of the pile or rod per blow), for the selected blows are shown on page 2 (See Figure 4-5). It also includes averages for Set, Rebound, VMX and DMX in the Numerical Data section near the top 1/3rd of the table. Sets ranged from 0.35 to 0.70 inches for the six blows shown. On page 3 a plot of penetration versus time is displayed. An examination of this pages (See Appendix A) for the various tests, indicates the signal noise level. Figure 4-6 shows minimal noise until the last or seventh blow. Therefore, only six blows are shown since they produced the most useful data.

Tabulated data includes pile set, pile rebound, pile maximum velocity (VMX) and pile penetration. The software allows an Excel file to be exported that includes all of the recorded data. Table 4-1 shows the resulting summary of data for the lab test. It includes the average value for set, blows per inch, and rebound. The maximum displacement per blow (i.e., DMX) can also be output from the Inopiles software.

PILE DRIVING MONITOR

PDM REPORT

Figure 4-4 Preliminary PDM Lab Deflection Versus Blow -- Blows 1 through 6 -- Page 1 of 3

PILE DRIVING MONITOR

3

2

1

0.60

0.35

0.35

50.108

50.058

50.029

PDM REPO	DRT			
Project Name Project Descript	Labcyloldtap	Labcyloidtap		10/2/2019 2-EOD
NUMERIC	AL DATA			Capacity Method: (None)
Set (inch)	0.54		VMX (ft/s)	10.319
Rebound (inch)	0.03		DMX (inch)	0.56
Capacity (kip)	-			
TABLE VIE	W			
Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
6	0.60	0.04	11.14	50.268
5	0.62	0.01	10.67	50.218
4	0.70	0.02	11.18	50.166

11.26

8.69

8.97

0.03

0.04

0.02

Average	0.54 inch	0.03 inch
Max Variation	n 0.35 inch	0.03 inch

Page 2 of 3

Figure 4-5 Preliminary PDM Lab Tabulated Data -- Blows 1 through 6 -- Page 2 of 3

PILE DRIVING MONITOR

PDM REPORT

Project Name	Labcyloldtap	Test Date	10/2/2019
Project Description		Pile Number	2-EOD

COMPLETE VIEW

i age o oi o

Figure 4-6 Preliminary PDM Lab Deflection versus Time -- Blows 1 through 6 -- Page 3

% of active	Set (in)		Rebound (in)			
zone	Min Average Max		Min	Average	Max	
22	0.04	0.45	0.76	0.02	0.05	0.11

Table 4-1 Average PDM Data for Preliminary Ruler in Sand Lab Test

4.1.3.2 PDM Data Quality

Figure 4-4 shows a good match between the digital PDM signal, shown in light gray, and the software interpretation of the ruler movement, shown in light blue. There does seem to be some discrepancy between the initial digital signal for blow number 1 and the corresponding software interpretation. At the end of the linear portion of the blue line the software produces a solid blue dot as the maximum displacement per blow. The software penetration was arbitrarily set at 50 feet, which corresponds to the light blue line, while the digital signal is slightly above this depth. Figure 4-7 is a second example of what is considered as high quality PDM data as both the digital and software interpreted data overlap.

Figure 4-8 shows inconsistencies at Blows's 3 and 5. This problem may have resulted from the simultaneous horizontal and vertical movements of the rod in the lab, but the exact reason was not determined. Figure 4-9 shows how the software interprets movements that a smaller than typically encountered. For example, during blow number 1 the maximum movement digitally estimated was 0.12 inches and the minimum digitally estimated movement was 0.05 inches. These small movements seemed to cause the software to show DMX and SET values that are offset from the actual values by a constant amount. Note that 0.01 feet corresponds to 0.12 inches

4.1.3.3 Reflective Tape Evaluations

Three different reflective tapes were utilized during the lab and field testing. The first tape was that supplied by Inopiles, a 3M Diamond Grade tape, hereafter be referred to as the *Original tape*. The supply of the *Original tape* was limited, thus it needed replaced twice during
the research. Inopiles was contacted concerning replacement tapes and suggested any white reflective tape would be acceptable.

A second tape was purchased to replace the *Original tape*. It was ordered on June 5, 2018 from Amazon. The product name is 3M 3430 White Prismatic Sheeting Reflective Tape 3" x 6" and will hereafter be referred to as *3M tape*.

The third tape was purchased to replace the second. It was ordered on January 28, 2019 from ULINE. The product name is Outdoor Reflective Tape -2" x 50', WHITE and will hereafter be referred to as *Outdoor tape*.

Figure 4-7 Example of High-quality PDM Data

Figure 4-8 Example of PDM Data with Error after Blow 2

Figure 4-9 Example of Consistent Error with PDM Data

Once the *Original tape* had been completely used the research team decided to conduct lab tests to evaluate the signal quality obtained from the other reflective tapes. The tests consisted of driving a sampling rod into loose sand in a 5-gallon bucket. To drive the rod into the sand a one-foot square ½ inch thick plywood cushion was placed on top of the rod and was hit with a small sledge hammer. This combination was used to simulate pile driving of concrete piles. Each tape was tested 3 times.

The first two tests for both tapes produced no concerns, while the third test for both tapes showed errors in recording blows. Both types of tape produced errors; however, there may be more signal noise from the 3M tape than the Outdoor tape. This concern needs further investigation. Figure 4-7 shows high quality PDM data. There are 5 blows and movements shown. For each blow the light gray data points are overlain by a solid blue line.

4.1.4 Required PDM Equipment

The equipment required to perform testing includes:

- 1) PDM Unit*
- 2) PDM power cable*
- 3) PDM data cable *
- 4) PDM mounting piece*
- 5) Tripod
- 6) Reflective tape*
- 7) Laser distance finder*
- 8) Measuring tape
- 9) Laptop with PDM software
- 10) Laptop charging cable
- 11) Tablet with PDM software*
- 12) Tablet charging cable*
- 13) Power adapter (Europe USA)
- 14) Power adapter (Australia USA)
- 15) PDM manual*
- 16) Driving log notes
- 17) Extension cables
- 18) Tent
- 19) Rags

The equipment supplied with the PDM are denoted with an *.

The manufacturer recommends that the PDM, laptop and tablet be completely charged before arriving at the job site. Additionally, all cables must be transported to the site in case additional charging is required. During testing at the six sites, the PDM battery lasted throughout the work days. However, both the tablet and the laptop batteries required charging after several hours of use.

4.1.5 Data Collection for Piles

4.1.5.1 PDM Pile Setup

Use of the manufacturers recommended leveling sand bag was not successful during deployment at the initial site. The research team therefore, recommends that the PDM be placed on a tripod using the mounting piece and located between 5 and 20 meters from the pile. It should then be connected to either the laptop or tablet using the appropriate data cable. When the computers are connected properly to the PDM and its software the red guide lasers will turn on. Operators should be able to see these on the pile or rods prior to testing, etc., therefore, the PDM should be placed directly in line and perpendicular to the pile. The distance from the PDM to the pile also affects the width of the reflective tape. The research team determined that a minimum of 4 inch by thick 6 inches wide tape should be placed on the piles. The exact distance, to within 2 inches, should be adjusted so that the PDM is level with an unobstructed field of view. The field of view can be seen by where the guide lasers that the PDM outputs lie on the pile (note that these lasers turn off during testing). It is recommended that the equipment be setup under a tent or other shaded area so that neither the laptop nor tablet overheat, and the associated screen is easier to read.

4.1.5.2 Pile Preparation

Prior to placing reflective tape on piles, determine the depth of predrilling and or jetting. When piles are pre-drilled, it is not necessary to put tape on the first section of pile as it will drive too fast for data to be collected. Piles are marked in one-foot increments with labels every five feet. The research team recommends that reflective tape be placed on the pile every five feet. This spacing will allow the software operator to input and prepare for the subsequent set of data collection as the pile is being continuously driven.

4.1.5.3 Data Collection

The PDM software and data acquisition system records data via an express job setting in the PDM software. The method allows the user to input the least amount of information between testing intervals and therefore was used to collect data every 5 feet during continuous pile driving. The instructions for running an express job are in the PDM manual. While the pile is being driven the reflective tape passes through the active zone (denoted by the red laser guides). Before each data acquisition the following parameters must be input into the software:

- Project Name used to denote both the site and pile number being tested.
- Pile Number used to denote subsequent data collections on the same pile.
- Penetration depth of pile below ground or mudline level at the start of a given test.
- Reflector LE length of pile from the reflector position to the pile toe, inclusive of pile shoes.
- OFFset Distance measured distance from the PDM unit to the reflector position.

It is important that the parameters be entered for a data collection before the tape enters the active zone. The parameters should be entered with values that represent what the tape and piles position will be upon the tape entering the active zone. Once the tape enters the active zone the signal test must be completed as quickly as possible, which is done by pressing Test Signal and pressing Next once the signal screen turns green. Then press Start Testing. The PDM will begin recording blows and display a live displacement versus time graph on the screen. The test should be stopped just before the tape exists the field of view to prevent the software from producing errors at the end. This procedure must be repeated for each subsequent reflector.

4.1.6 SPT Data Collection Process

The method for collecting PDM data for SPT testing is similar to that of pile driving with several important differences. This section will cover how the testing procedure was adapted for SPT testing.

4.1.6.1 PDM SPT Setup

The PDM should be placed on the tripod using the mounting piece and connected to either the laptop or tablet via using the data cable. Upon connecting to the PDM software the red guide lasers will turn on. The PDM should be angled directly at the SPT rod so that the guide lasers can be seen reflecting off of it. The distance the PDM should be from the rod is a function of how wide the reflective tape is. The distance should be determined by using measuring tape. The tripod should be adjusted so that the PDM is level with an unobstructed field of view that lies on the rod just above the trough. The field of view can be seen by where the guide

96

lasers that the PDM outputs lie on the pile (note that these lasers turn off during testing). It is preferable to have the setup under a tent or other shade so that the laptop or tablet stays cooler and the screen is easier to read.

4.1.6.2 SPT Rod Preparation

A new piece of tape needs to be applied before driving begins on a new rod segment. Reflective tape should be placed on the rod near the top of the active zone. To ensure the tape adheres properly it is helpful to wipe off the rod with a rag.

4.1.6.3 Data Collection

The PDM will record data via the same express job routine within the PDM software as used during pile driving. The method was adapted to account for SPT testing. The instructions for running an express job can be found in the PDM manual. After tape has been applied to the rod within the SPT testing zone, the parameters can be entered for data collection. Note, one 4-inch-wide by 6-inch-long piece of tape was secured around the SPT rod within the 18-inch testing zone and such that it did not interfere with the drillers blow counting process. Before each data acquisition the following parameters must be inputted into the software:

- Project Name used to denote both the site and SPT test boring number.
- Pile Number used to denote subsequent data collections on the same SPT test.
- Penetration depth of SPT rod below ground or seabed level at the start of a given test.
- Reflector LE length of SPT rod from the reflector position to the SPT rod toe.
- Offset Distance measured distance from the PDM unit to the reflector position.

Next a signal test is completed by pressing Test Signal and pressing Next once the signal screen turns green. Then press Start Testing. At this time the drillers should begin driving the SPT rods. The PDM will begin recording blows and display a live displacement over time graph on the screen. The test should be stopped just before the tape exists the field of view to prevent the data from producing an error message for the last blow. This procedure should be repeated for subsequent reflector rod section to be driven.

4.2 CMS Testing Process

4.2.1 Equipment

The Florida Tech CMS system consists of several digital cameras, lens, and associated tripods. The equipment must be carefully transported to the site and placed in a relatively clean environment and protected from severe weather. A tent is recommended to be placed over all electronics. Figure 4-10 is a photo from the Baldwin Bypass testing site near Jacksonville Florida. The testing was performed during severe rain and thunderstorms. The CMS system was carefully transported from the truck to the testing location and produced useable deflection data, while the PDM Surface Pro[®] malfunctioned and prevented any data from being collected. Figure 4-11 is a photo from the Reedy Creek testing, which was performed during a warm sunny Florida day. No tent was used mainly due to difficulties with the pile driving and placement, as a result one of the cameras overheated and shut down during testing.

Figure 4-10 CMS and PDM Field Testing in Heavy Rain

Figure 4-11 CMS and PDM Testing in Partially Sunny Weather

4.2.2 Marking the Piles or Rods

Prior to any testing, the piles or SPT rods were marked with either dark-colored paint, black or white electrical tape, or permanent markers. The recommended marking techniques are being evaluated during this research. The camera video automatically shows the pile depth markings, and therefore, no additional information was required as input prior to testing. Since each setup used different focal lengths from the piles to the cameras and lenses being used, a camera magnifying loupe was used to measure the known tape size (width in inches) of the tape placed on the test pile. This information was then used in software to calculate the number of pixels of the tape being imaged. This procedure allowed the direct calibration of the pixel size in a video sequence given the camera, lens, and focal-length from the camera to the pile being tested.

4.2.3 Field Testing on Piles or SPT Rods

Once the pile or SPT rods are properly marked, the camera(s) were placed perpendicular to the rods at a convenient distance of typically 15 to 50 feet. As driving commenced the cameras were turned on and focused to record movements. Currently, there are no digital signals displayed during data acquisition and testing, therefore the equipment was transported to the Florida Tech Marine Environment and Optics Lab in Melbourne, Florida.

4.2.4 Data Reduction

CMS data requires post image processing. Once the digital videos are downloaded to computers in the lab, special image processing software was used to convert the video imagery and associated markings to pile movements. The movement of individual pixels are tracked using the software to produce pile or SPT rod movements per hammer blow. Figure 4-12 shows the reduced data from the Baldwin Bypass video as pile movements versus pixel number. The data indicate an average of about 0.68-inch (17 mm) of displacement per blow and an average of 0.276-inch (7 mm) of rebound. Figure 4-13 shows the pile movements for testing at Dunn Creek in Palatka, Florida. SPT tests were also conducted in the soils that produced pile rebound and the image shows a time-dependent movement between hammer blows. This video was from testing at Dunns Creek, September 19th, 2018 at depths from 75 and 75.12 feet. It represents a 20-blow recording sequence recorded over 28 seconds with the displacement of the pile, which is opposite of the plots obtained from the PDM software.

Figure 4-12 Pile Movement versus 60-Hz Frame Number for Baldwin Bypass Test Pile: Black Spray Paint Line

Figure 4-13 60-Hz Video Recording Software Plot from Dunns Creek SPT Rod

Movements

4.3 Overview of CT Testing Procedures

The behavior of rebound and non-rebound soils can be analyzed and compared directly through in situ measurements during a pile driving procedure, or indirectly via lab tests simulating the same behavior.

The cyclic loading of a soil sample during a cyclic triaxial test is similar to a cyclic loading of the pile and the soil around it during a pile driving procedure. Although the scale differs when comparing the size of a soil sample and the area of soil affected around the driven pile, there are similarities such as the loading and unloading components, the application of a cyclic load and the possibility of rebound during the soil displacement.

Triaxial tests data evaluated was provided by Florida Department of Transportation (FDOT) under BDV-28 977-0,1 with the objective of determining the damping coefficient of both rebound and non-rebound soils.

4.4 CT Tests Performed

Table 4-2 presents an overview of the cyclic triaxial performed, with the thin walled tube sample depths for each CT boring at each site. Data from 40 CT test samples were obtained from the six sites listed.

Site	Location	Sample Depth (ft)
Chaffee	EB3	52-55
Chaffee	North of I-10	47-49
Chaffee	North of I-10	60-62
I4&192	Pier 6	50-52
I4&192	Pier 6	60-62
I4&192	Pier 6	75-77
I4&192	Pier 6	80-82
I4&192	Pier 7	60-62
I4&192	Pier 7	70-72
I4&192	Pier 7	85-87
I4&192	Pier 8	45-47
I4&192	Pier 8	55-57
I4&192	Pier 8	65-66
I4&192	Pier 8	70-72
I4&192	B6 EB1	50-52
I4&192	B6 EB1	58-59
I4&192	B6 EB1	70-72
I4&192	B6 EB1	80-82
I4&192	B6 EB1	91-93
I4&192	B7 EB1	46-47
I4&192	B7 EB1	70-72
I4&192	B7 EB1	75-77
I4&417	EB1	20-22
I4&417	EB1	29-31
I4&417	EB1	58-61
I4&417	EB2	23-25
I4&417	EB2	55-57
I4&Osceola	Pier 2	75-77
I4&Osceola	Pier 2	80-81
I4&Osceola	Pier 2	85-87
I4&Osceola	Pier 3	75-76
I4&Osceola	Pier 3	80-82
I4&Osceola	Pier 4	60-61
Heritage	P1	62-64
Heritage	EB5	57-59
Heritage	EB5	65-67
Heritage	P10	55-57
Heritage	P10	62-64
Ramsey Branch	B2	31-33.5
Ramsey Branch	B2	41-43.5
Ramsey Branch	B3	48.5-51
Ramsey Branch	B3	63.5-66

Table 4-2 CT Testing Descriptions

4.5 Existing Rebound Data

According to the current FDOT specification (455-5.10.3), rebound values that are equal to or greater than 0.25 inches are considered high. BVD 28 977-01 findings indicated that using ¹/₂ or even 1" for a high rebound threshold might produce clearer engineering information. Based on the PDA data for the five PDA sites tested, the percentage of depths in which the rebound is equal or greater than 0.25, 0.50 and 1.00 inch is presented in Table 4-3.

Site	% Depths with Rebound Equal or Greater than			
Sile	0.25 in	0.50 in	1.00 in	
Ramsey Branch	95%	67%	29%	
I10 & Chaffee	89%	35%	18%	
I4 - 192	80%	37%	0%	
Heritage Parkway	52%	8%	0%	
I4 & 417	45%	1%	0%	

Table 4-3 Percentage of Depths with Rebound ≥ 0.25 , 0.50, and 1.00 inch

Based on Table 4-3, the following trends are shown.

- Ramsey Branch, I10 & Chaffee and I-4 & 192 data have at least 80% of the depths with rebound greater than ¹/₄ inch.
- Ramsey Branch, I10 & Chaffee and I-4 & 192 data have at least 35% of the depths with rebound greater than ¹/₂ inch.
- Ramsey Branch and I10 & Chaffee data have at least 18% of the depths with rebound greater than ¹/₂ inch.

According to the results shown in Table 4-3, if the criteria for high rebound increases from 0.25 inches to $\frac{1}{2}$ inch, fewer sites will be considered high-rebound. Even fewer sites will meet the criteria if 1 inch is considered critical, which might eliminate problematic sites.

4.6 CT Test Procedures

Both triaxial and CT tests were performed by FDOT at the State Materials Office (SMO). The equipment used included a Durham Geo Slope Indicator 5-500 panel and a MTS DuraGlide 244-21 Hydraulic Actuator which is part of a Servo Hydraulic Dynamic Triaxial Testing System. The cyclic loading is generated by the action of a servo valve, which used a closed-loop electrical signal control. Figure 4-14 depicts the Durham Geo Slope Indicator 5-500 panel and Figure 4-15 shows the MTS DuraGlide 244-21 hydraulic actuator and loading frame system.

Figure 4-14 Durham Geo Slope Indicator 5-500 Panel

Figure 4-15 MTS DuraGlide 244-21 Hydraulic Actuator and Loading Frame

Both cyclic and regular triaxial tests were performed on soil samples obtained from Thin Walled Tube Samples (i.e., Shelby tubes), following D1587/D1587M – 15 ASTM standards. Cyclic stress-strain behavior changes based on the stress applied during each cycle. Therefore, the deflection versus time was needed for each stress level for the analysis. In order to establish the stress levels to be used during CT testing, a consolidated undrained (CU) triaxial test was performed on the first sample extruded from the tube. The stress-strain data from this test was assumed to be representative of the second sample used in the subsequent CT test. Therefore, the failure stress from the CU test was used to establish proposed CT stress levels of 10, 20, 40, 60 and 80 percent of the CU failure stress. The stress levels for each sample are shown in Appendix

F. Due to inherent testing and sample variability, several CT samples were subjected to stress levels that exceeded the CU failure stress level. This phenomenon produced CT stress levels over 100% of the CU failure stress level. For example, at Chaffee, EB3, 52-55 ft, stress levels reached almost 170% of the failure stress. At each of these stress levels, 1000 loading and unloading cycles were performed. Each sample had its diameter, height, mass properties determined prior to the test run. After each test, moisture content was determined.

During CT tests, the sampling frequency set was 50 Hz, producing 50 data points each second or cycle. Data were collected using a data acquisition time stamp recorded in seconds. Each time stamp has a corresponding load applied (lb) and displacement (inches).

During one cycle, the servo valve responsible for applying cyclic loading on the sample is opened for 1/10 of a second. However, the soil response lags behind the loading, and due to viscous behavior, it doesn't necessarily have the same duration as the valve's cycle.

With the data collected during the test, it is possible to correlate load versus time, deflection versus time and stress versus strain. Figure 4-16, Figure 4-17 and Figure 4-18 show an example of each for 10 cycles. Inspection of Figure 4-16 shows small variations in maximum applied load near the 20-pound level. Figure 4-17 shows deflections for 10 cycles and that the accumulated deflections increase slightly after each loading. Figure 4-18 shows the stress-strain responses during the 10 cycles form a hysteresis loop, which is typical of soils, which are not purely elastic materials. Figure 4-19 shows a typical stress versus strain plot for a 14-stress-level test. At each of the 14 stress levels, which vary from about 3 psi to near 30 psi, 1000 load-unload cycles were performed. This particular plot shows several unusual responses. First, there are very limited strains for stress levels up to 20 psi, indicating that the soil is below its critical stress level (CSL), the level below which it behaves most elastically. Secondly, once the strains become excessive (i.e., past 0.30 or 30 %), the unloading stresses decrease to values below zero. This response is most likely due to the sample drastically changing shape and therefore contact area. If the contact area actually increases at this point, the unloaded stress calculated based on the initial sample diameter would be incorrect.

Figure 4-16 Typical Load versus Time for 10 Cycles

Figure 4-17 Typical Deflection versus Time for 10 Cycles

Figure 4-18 Typical Stress versus Strain for 10 Cycles

Figure 4-19 Typical Stress versus Strain for a Complete CT Cest with 14 Stress Levels

5 Cyclic Triaxial Results and Analysis

5.1 Triaxial Tests Results

Table 5-1 summarizes the results from the 42 CU triaxial tests performed prior to the corresponding CT tests for each site, boring and depth specified.

The samples were tested based on effective stresses that matched their tests depths. According to the results shown, the failure strains range from 2.75 to 30.1%, while the failure stresses range from 13.94 to 328.51 psi.

5.2 CT Tests Results

Plots relating strain with stress and strain with time were generated for each CT test. The strain for each data point was calculated by dividing the displacement by the original specimen height. The stress was calculated by dividing the applied load by the original area of the specimen. Strain versus time graphs are included in Appendix F.

The percentage of the failure stress that the samples were subjected at each stress level (i.e., normalized stress level) are also presented in Appendix F. The results are presented in Appendix F as well.

	Site	Location	Sample Depth (ft)	Confining Stress (σ3)	Failure Stress (psi)	Failure Strain (%)
-	Chaffee	EB3	52-55	17.00	17.99	3.12
	Chaffee	North of I-10	47-49	15.00	13.94	3.09
	Chaffee	North of I-10	60-62	21.00	62.81	26.46
	I4&192	Pier 6	50-52	20.00	34.90	21.62
	I4&192	Pier 6	60-62	24.00	52.96	25.80
	I4&192	Pier 6	75-77	32.00	65.69	10.42
	I4&192	Pier 6	80-82	32.00	65.69	10.42
	I4&192	Pier 7	60-62	27.00	83.23	12.34
	I4&192	Pier 7	70-72	30.00	47.93	18.29
	I4&192	Pier 7	85-87	35.00	36.45	28.11
	I4&192	Pier 8	45-47	18.00	21.14	21.50
	I4&192	Pier 8	55-57	21.00	43.02	12.86
	I4&192	Pier 8	65-66	24.00	72.34	30.10
	I4&192	Pier 8	70-72	24.00	60.24	2.75
	I4&192	B6 EB1	50-52	20.00	53.36	24.63
	I4&192	B6 EB1	58-59	20.00	53.36	24.63
	I4&192	B6 EB1	70-72	25.00	50.79	5.75
	I4&192	B6 EB1	80-82	27.00	59.72	3.92
	I4&192	B6 EB1	91-93	34.00	52.16	10.83
	I4&192	B7 EB1	46-47	18.00	58.73	15.60
	I4&192	B7 EB1	70-72	25.00	53.92	18.34
	I4&192	B7 EB1	75-77	27.00	69.02	12.31
	I4&417	EB1	20-22	10.00	328.51	6.16
	I4&417	EB1	29-31	10.00	328.51	6.16
	I4&417	EB1	58-61	24.00	214.61	18.44
	I4&417	EB2	23-25	12.00	20.56	21.90
	I4&417	EB2	55-57	24.00	54.57	14.97
	I4&Osceola	Pier 2	75-76	30.00	31.65	17.36
	I4&Osceola	Pier 2	80-81	32.00	58.89	16.12
	I4&Osceola	Pier 2	85-87	34.00	250.43	7.93
	I4&Osceola	Pier 3	75-76	27.00	35.84	4.08
	I4&Osceola	Pier 3	80-82	30.00	51.98	18.77
	I4&Osceola	Pier 4	60-61	20.00	28.31	17.39
	Heritage	P1	62-64	25.00	38.31	14.89
	Heritage	EB5	57-59	24.00	29.85	16.26
	Heritage	EB5	65-67	24.00	29.85	16.26
	Heritage	P10	55-57	23.00	23.35	14.13
	Heritage	P10	62-64	25.00	31.45	16.91
	Ramsey Branch	B2	31-33.5	17.00	55.61	4.24
	Ramsey Branch	B2	41-43.5	20.00	52.93	9.36
	Ramsey Branch	B3	48.5-51	29.00	50.62	9.97
	Ramsey Branch	B3	63.5-66	29.00	50.62	9.97

Table 5-1 CU Triaxial Tests Results

5.3 CT Data Analysis

CT data contain over 600,000 rows of data per test performed, which makes the analysis very difficult and lengthy if executed using Excel. For that reason, Python[™], a high-level programming language, was chosen instead. Specifically, the Python[™] tool Jupyter Notebook 5.4.0 was used for all test analyses. It is an online tool and therefore easily accessible. The flow chart shown in Figure 5-1 summarizes the step by step process used during the Python[™] analyses. Appendix D contains the code used to generate the results. In general, the following steps were completed:

- 1. Importing the CT data from excel into PythonTM,
- 2. Initial calculations to determine:
 - the starting point for each cycle
 - the stress level (i.e. maximum load divided by initial sample area) for each cycle
 - the loading and unloading portions of each cycle
- 3. Second level calculations to determine:
 - applied stress and resulting strains per cycle,
 - the maximum displacement and its corresponding time per cycle
 - determining the loading versus time and unloading versus time math functions
- 4. Third level calculations to determine:
 - elastic moduli per cycle
 - outliers from the moduli
- 5. Fourth level analyses of data to
 - calculate a damping coefficient for each unloading cycle
 - calculate the area under the displacement-time curve for each cycle

Once these steps were completed the data was evaluated to determine possible correlations between the damping coefficients and/or the areas to rebound.

Figure 5-1 PythonTM CT Data Analysis Programming Flow Chart

The assumption made for the cyclic analysis was that the soil produces elastic behavior during loading, and viscoelastic behavior during unloading. During each one second cycle, loads were applied over 0.1 seconds, followed by 0.9 seconds of no load.

Figure 5-2 shows a typical strain versus time cycle for a rebound soil. It shows that the loading portion has a linear strain-time behavior, while the unloading portion is closer to a second-degree polynomial. Therefore, a linear equation and a second-degree polynomial equation were used in PythonTM to describe the strain-time behavior of the soil.

Figure 5-2 Typical Cyclic Strain versus Time Behavior

5.3.1 Initial Calculations

Table 5-2 shows the average triaxial and CT sample dimensions for each site. The dimensions for each sample tested are shown in Appendix F. The first calculations consisted of determining stress and strain. The stress was calculated by dividing the applied load by the initial specimen's area, and the strain is the ratio of the displacement by the specimen's initial height.

Site	Average Area (si)	Average Height (in)	Average Mass (lb)	Average Density (pcf)
Chafee	6.370	6.131	2.424	107.3
I4&192	6.497	5.585	2.344	112.0
I4&417	6.386	6.100	2.645	110.7
I4&Osceola	6.399	5.679	2.451	109.6
Heritage	6.223	6.077	2.369	109.6
Ramsey Branch	6.429	6.147	2.691	117.8

Table 5-2 Average Specimen Dimensions for both CU and CT Data

5.3.2 Digitally Numbering the Cycles

The second step consisted of dividing the digital data into cycles, which were determined by rounding the time down to the whole number integer as shown in Table 5-3. Although the first cycle number is 0, it is actually the first cycle read by the software, and therefore named cycle 1. For programming purposes, this manipulation does not affect the results and is an internal programming counter.

Time stamp (s)	Integer	Cycle number
0.220	0.0	0
0.500	0.0	0
1.250	1.0	1
1.890	1.0	1
5.890	5.0	5
6.230	6.0	6
10.790	10.0	10

Table 5-3 Examples of PythonTM Numbering

5.3.3 Digitally Determining Stress Levels

The stress levels were digitally determined by dividing the cycles into groups of 1,000. Therefore, cycles 0 - 1,000 were assigned to stress level 1; cycles 1,000 - 2,000 were assigned to stress level 2 and so on.

5.3.4 Digitally Determining Loading and Unloading Portions

Another critical programming step was defining the load and the unload parts of each cycle. The loading portion ranges from the first point of the cycle to its maximum displacement. Unloading, on the other hand, was set as the range between the maximum displacement and the last point of the cycle.

The 600,000 data points per CT test include data between each load applications (i.e., data between the unloading of cycle I and loading of cycle i+1). Figure 5-3 shows data prior to and immediately after a cyclic loading. Since the data between cycles did not need to be analyzed, those data were removed from the analysis. In order to do so, time increments (Δ) before and after the peak load were evaluated. Therefore, assuming that the time for maximum displacement for cycle I is tmax, then the range considered goes from (tmax – 0.05) seconds to

(tmax + 0.1) seconds. The unloading part was assumed to last longer due to the viscoelastic behavior.

Figure 5-3 Range of Data Points Considered for Each Cycle

5.3.5 Engineering Properties

Once the cycles were defined and the data points to be evaluated were separated from the whole data, the soil's engineering properties were calculated. For the loading portion of each cycle, the elastic coefficient (Young's Modulus) E was calculated based on maximum deviatory stress ($\sigma_{d,max}$), maximum strain (ϵ_{max}) and initial strain (ϵ_0) of each cycle:

$$E = \frac{\sigma_{d,max}}{\varepsilon_{max} - \varepsilon_0}$$

Outliers were found when calculating E. Some results for E were infinite and were removed from the analysis. Infinity results from ε_{max} being equal to ε_0 . Possible explanations, can be either because the loading frequency is not consistent, which causes the cycle dividing method to fail, or because the data points for the loading portion were cut off when defining the range of data being analyzed (Δ). Once the moduli were determined per stress level, the data were analyzed to determine any possible engineering trends. Figure 5-4 shows E versus cycle number and depicts moduli above the average, which for this example is 250,000 psi. Figure 5-4 also shows that certain values of E were much higher than the majority of the results, and therefore were considered outliers. That most likely was caused by a lack of data points being recorded within the loading part. Outliers were removed based on engineering judgement of realistic moduli and subsequent visual analysis of plots as shown in Figure 5-4.

Figure 5-4 Typical E versus Cycle Number

Once the infinite values and outliers were removed from a data set, the average E value per site was determined. The average E per stress level is presented in Appendix F. Table 5-4 shows the average percentage of E values considered as outliers for each site. This testing produced about 2% outliers, which was considered acceptable.

Site	Average of % Infinite E	Average of % Total outliers E
Chaffee	2	3
Heritage	2	2
I4&192	2	2
I4&417	2	2
I4&Osceola	2	2
Ramsey Branch	2	3

Table 5-4 Average Number of Excluded E Outlier Values

In order to estimate the damping coefficient, the Python[™] polyfit function was used to determine the best second-degree polynomial that fits the strain versus time data points for each cycle. Figure 5-5 shows an example of the Python[™] polyfit data fitting.

Figure 5-5 PythonTM Polyfit Fitting Function Example

Once the polynomial equation was defined, its derivative ($\dot{\epsilon}$) was calculated according to:

 $\epsilon : At^2 + Bt + C$ $\dot{\epsilon} = 2At + B$

The damping factor was then determined based on a Kelvin-Voigt model, using $\sigma_{d,max}$, $\dot{\epsilon}$ and E from the loading porting of the same cycle:

$$\eta = \frac{\sigma_{\max} - E \times \varepsilon}{\dot{\varepsilon}}$$

An average of η was determine per stress level.

5.4 CT Analysis of Results

5.4.1 Correlation to CASE Damping Factor

The CT damping factor has stress × time units as shown:

$$\sigma = E \times \varepsilon + \eta \times \dot{\varepsilon} \rightarrow \frac{lb}{in^2} = \frac{lb}{in^2} + [\eta]\frac{1}{s}$$
$$\frac{lb}{in^2} = [\eta]\frac{1}{s} \rightarrow [\eta] = \frac{s.lb}{in^2}$$

Figure 5-6 shows the distribution of η versus normalized stress ($\sigma_{d_{max}}/\sigma_{f_{CU}}$) for each stress level. The failure stress from the corresponding CU triaxial test was used for normalization. In several instances, the CU failure stress was much less than the corresponding CT stress level, thereby producing normalized values of well over 100 %.

Damping coefficients determined from CT tests ranged from near zero to over 100,000 psi-s, with the majority of η values below 10. To help clarify this information, a frequency table was developed, with each range corresponding to one order of magnitude (Table 5-5). Although this information could also be presented using a histogram, it is believed that the table is sufficient to clarify the results.

Figure 5-6 n versus Normalized Stress Level Based on CU Triaxial Failure Stress

Table 5-5 shows the data points obtained for η within each range, depicted by order of magnitude. According to the results, 80% of the η values obtained are between 0 and 10 s-lb/in².

Range	Data Points	% Total	% Cumulative
0.001 - 0.01	5	1.1%	1.1%
0.01 - 0.1	106	23.6%	24.7%
0.1 - 1	214	47.6%	72.2%
1 - 10	84	18.7%	90.9%
10 - 100	19	4.2%	95.1%
100 - 1,000	13	2.9%	98.0%
1,000 - 10,000	3	0.7%	98.7%
10,000 - 100,000	4	0.9%	99.6%
100,000 - 1,000,000	1	0.2%	99.8%
1,000,000 - 10,000,000	0	0.0%	99.8%
10,000,000 - 100,000,000	1	0.2%	100.0%
Total	450	100%	

Table 5-5 Range of η [s·lb/in²] for all CT data

Frequency tables were also developed for each of the five sites. Ramsey Branch, Chaffee Road and I4, and 192 have the highest reported PDA rebound of the five sites analyzed. Two of those three sites show over 60 % of the damping coefficients between 0.1 and 1. The Chaffee Road data shows about 60% have damping coefficients below 0.1. Heritage Parkway, which had limited rebound greater than ¼ inch showed over 50% of the coefficients between 0.01 and 0.1. In summary, there seems to be a slight relationship between the CT damping coefficients and rebound, but the sampling process and number of sites must be increased to make substantial conclusions.

	Data	0/0	%
Range	Points	Total	Cumulative
0 0.01	0	0.0%	0.0%
0 = 0.01	0	0.0%	0.0%
0.01 - 0.1	31	70.5%	70.5%
1 - 10	10	22.7%	93.2%
10 - 100	0	0.0%	93.2%
100 - 1000	2	4.5%	97.7%
1000 - 10000	1	2.3%	100.0%
10,000 - 100,000	0	0.0%	100.0%
100,000 - 1,000,000	0	0.0%	100.0%
1,000,000 – 10,000,000	0	0.0%	100.0%
10,000,000 – 100,000,000	0	0.0%	100.0%
Total	44	100%	

Table 5-6 Range of η [s·lb/in²] for Ramsey Branch

Range	Data Points	% Total	% Cumulative
0-0.01	2	3.0%	3.0%
0.01 - 0.1	40	59.7%	62.7%
0.1 – 1	12	17.9%	80.6%
1 – 10	9	13.4%	94.0%
10 - 100	3	4.5%	98.5%
100 - 1,000	1	1.5%	100.0%
1,000 - 10,000	0	0.0%	100.0%
10.000 - 100.000	0	0.0%	100.0%
100,000 - 1,000,000	0	0.0%	100.0%
1,000,000 – 10,000,000	0	0.0%	100.0%
10,000,000 - 100,000,000	0	0.0%	100.0%
Total	67	100%	

Table 5-7 Range of η [s·lb/in²] for Chaffee

Range	Data Points	% Total	% Cumulative
0-0.01	0	0.0%	0.0%
0.01 - 0.1	14	11.9%	11.9%
0.1 - 1	74	62.7%	74.6%
1 - 10	20	16.9%	91.5%
10 - 100	5	4.2%	95.8%
100 - 1.000	4	3.4%	99.2%
1.000 - 10.000	0	0.0%	99.2%
10,000 - 100,000	1	0.8%	100.0%
100,000 - 1,000,000	0	0.0%	100.0%
1,000,000 – 10,000,000	0	0.0%	100.0%
10,000,000 - 100,000,000	0	0.0%	100.0%
Total	118	100%	

Table 5-8 Range of η [s·lb/in²] for I-4 & SR-192

Range	Data Points	% Total	% Cumulative
0-0.01	0	0.0%	0.0%
0.01 - 0.1	2	3.8%	3.8%
0.1 – 1	23	44.2%	48.1%
1 – 10	20	38.5%	86.5%
10 - 100	5	9.6%	96.2%
100 - 1,000	0	0.0%	96.2%
1.000 - 10.000	0	0.0%	96.2%
10.000 - 100.000	1	1.9%	98.1%
100,000 - 1,000,000	1	1.9%	100.0%
1,000,000 – 10,000,000	0	0.0%	100.0%
10,000,000 - 100,000,000	0	0.0%	100.0%
Total	52	100%	

Table 5-9 Range of η [s·lb/in²] for I-4 & SR-417

Range	Data Points	% Total	% Cumulative
0-0.01	0	0.0%	0.0%
0.01 - 0.1	7	8.0%	8.0%
0.1 - 1	52	59.8%	67.8%
1 - 10	17	19.5%	87.4%
10 - 100	4	4.6%	92.0%
100 - 1,000	4	4.6%	96.6%
1.000 - 10.000	2	2.3%	98.9%
10.000 - 100.000	1	1.1%	100.0%
100,000 - 1,000,000	0	0.0%	100.0%
1,000,000 – 10,000,000	0	0.0%	100.0%
10,000,000 - 100,000,000	0	0.0%	100.0%
Total	87	100%	

Table 5-10 Range of η [s·lb/in²] for I-4 & Osceola
Range	Data Points	% Total	% Cumulative
0-0.01	3	3.7%	3.7%
0.01 - 0.1	43	52.4%	56.1%
0.1 – 1	22	26.8%	82.9%
1 - 10	8	9.8%	92.7%
10 - 100	2	2.4%	95.1%
100 - 1,000	2	2.4%	97.6%
1,000 - 10,000	0	0.0%	97.6%
10.000 - 100.000	1	1.2%	98.8%
100,000 - 1,000,000	0	0.0%	98.8%
1,000,000 - 10,000,000	0	0.0%	98.8%
10,000,000 – 100,000,000	1	1.2%	100.0%
Total	82	100%	

Table 5-11 Range of η [s·lb/in²] for Heritage

In order to be compared to Jc, η has to be normalized by an impedance (Im). The properties chosen to compose Im were based on their units, and they are the cross-sectional area of the specimen (A), the soil's density (ρ) and the shear wave velocity traveling through the soil sample (c_{sample}). The relation among the properties is the following:

$$I_{\rm m} = \frac{A \times \rho}{c_{sample}}$$

Dividing the damping factor by the impedance, the result becomes dimensionless:

$$\frac{s.lb}{in^2} \div \frac{in^2 lb/_{in^3}}{in/s} = \frac{s.lb}{in^2} \times \frac{in/s}{in^2 lb/_{in^3}} = \frac{s.lb}{in^2} \times \frac{in^4}{in^2 lb.s} = \text{dimensionless}$$

However, the wave velocity traveling through the pile during the pile driving process is not the same as the wave traveling through the soil sample during the cyclic triaxial test. For that

reason, when comparing CASE damping factor to the damping factor calculated from the cyclic triaxial data (η), a factor of cpile/csample has to be used in order to fairly compare them.

According to the U.S. Department of Transportation (2017), the compression wave velocity traveling through the triaxial soil sample relates to Young's modulus as follows:

$$\mathbf{E} = c_{sample}^2 \boldsymbol{\rho}$$

Huang et al. (2017) presents an estimate for the wave traveling during pile driving (cpile) of 320 m/s (12598 in/s) for silty sands. Therefore, η resultant from the triaxial test was multiplied by a ratio of 12598/csample and then by the impedance Im in order to be compared to Jc. Table 5-12 shows the range of results obtained.

Range	Data Points	% Total	% Cumulative
10E2 - 10E3	51	11.3%	11.3%
10E3 - 10E4	179	39.8%	51.1%
10E4 - 10E5	156	34.7%	85.8%
10E5 - 10E6	39	8.7%	94.4%
10E6 - 10E7	11	2.4%	96.9%
10E7 - 10E8	7	1.6%	98.4%
10E8 - 10E9	4	0.9%	99.3%
10E9 - 10E10	2	0.4%	99.8%
10E10 - 10E11	0	0.0%	99.8%
10E11 - 10E12	1	0.2%	100.0%
Total	450	100%	

Table 5-12 Range of Results for Normalized Damping Factor

According to Table 5-12, 80% of the normalized damping factor results fall within the range between 10^2 and 10^5 . Therefore, when normalized, η varies from two to five orders of magnitude higher than CASE damping factor.

5.4.2 Strain versus Time Area

The area under the curve strain versus time curves was also analyzed in order to differentiate rebound from non-rebound soils. The average areas (i.e. total areas from all tests per site divided by number of CT tests per site) for each site are shown in Figure 5-7. Ramsey Branch produced the most rebound (i.e. over 1 inch for well over 10 feet) and the CT data

indicates that it has the largest area under the strain-time curves. Heritage Parkway showed minimal rebound (1/4 inch for about 10 feet) and produced the smallest area under the strain-time curves. I4 & 417 had over ½ inch for about 25 feet, while Chaffee Road at I-10 had about 1 inch of rebound over about 15 feet.

Based on Table 4-3, and the ¹/₂ inch rebound level, Ramsey Branch, Chaffee and I4&192 had the largest percentage of depths with rebound greater or equal to ¹/₂ inch. With the exception of I4&192, area under the strain-time curves does produce an indication of rebound. Therefore, the rebound soils are more likely to have higher average area per cycle under the strain versus time curves.

Figure 5-7 Average Strain versus Time Curve Area per Site

5.4.3 Hysteresis Loop Equivalent Viscous Damping

Another approach used to define the damping coefficient of soils is defined based on a hysteresis loop method. Tedesco and McDougal (1999) defined the unitless viscous damping coefficient of a material which produces a hysteresis loop using the relationship between the energy loss per cycle (Δ W) and the maximum strain energy (W) of the given cycle as shown in Figure 5-8.

Figure 5-8 Hysteresis Curve

The energy loss per cycle is defined by the area of the hysteresis loop, which represents the difference between the energy absorbed by the system during loading minus the amount of energy dissipated during unloading. The triangle highlighted in Figure 5-8 represents the maximum energy stored in the system.

According to Tedesco and McDougal (1999), the energy loss per cycle (ΔW) can be defined by relating a linear spring constant (k1), the equivalent viscous friction or damping (ζeq) and the maximum displacement (xm) of a hysteretic system according to the following equation.

$$\Delta W = 2\pi k_1 \zeta_{eq} x_m^2$$

The maximum strain energy for a linear system (W) can be calculated by:

$$W = \frac{1}{2}k_1 x_m^2$$

By combining the two equations, the dimensionless equivalent viscous damping coefficient can be defined by the following expression:

$$\zeta_{eq} = \frac{\Delta W}{4\pi W}$$

Using the equivalent viscous damping hysteresis loop approach, the damping coefficients were obtained from the different sites using Python software coding. The results for each of the sites are shown in Figure 5-9 through Figure 5-14. Coefficients are shown for each 1000 cycles or stress level, since stress levels were increased after each set of 1000 cycles. The coefficients

typically were higher for the initial 1000 cycles and in some cases increased over the last 1000 or 2000 cycles (See Chaffee Rd, Heritage Pkwy, and Ramsey Branch).

Figure 5-9 Chaffee Rd Equivalent Viscous Damping Coefficients

Figure 5-10 Heritage Pkwy Equivalent Viscous Damping Coefficients

Figure 5-11 I-4 & SR-192 Equivalent Viscous Damping Coefficients

Figure 5-12 – I-4 & SR-417 Equivalent Viscous Damping Coefficients

Figure 5-13 I-4 & Osceola Equivalent Viscous Damping Coefficients

Figure 5-14 Ramsey Branch Equivalent Viscous Damping Coefficients

Figure 5-15 shows the average equivalent viscous damping coefficients for each site and Table 5-13 presents the range of results obtained. The damping coefficients presented in Table 5-13 are similar to the Case values (shown in Table 1). The Case values range from 0.15 to 0.70 for sand silt mixes, while these values range from 0.18 to 0.59. These damping coefficients are dimensionless like the Case values and are based on equivalent energy from the hysteresis response obtained during cyclic triaxial testing with 1-second cycles and load durations of 0.1 seconds.

Figure 5-15 Average Equivalent Viscous Damping Coefficients for All sites

	Maximum	Minimum
Site	Damping	Damping
Chaffee Rd	0.59	0.24
Heritage Pkwy	0.48	0.22
14&192	0.37	0.20
14&417	0.54	0.21
I4&Osceola	0.49	0.18
Ramsey Branch	0.43	0.22

Table 5-13 - Range of Equivalent Viscous Damping Coefficients

5.4.4 Findings

Viscous damping factors were successfully calculated from 40 CT tests on thin tube walled samples obtained from sites in central and north Florida. Due to the complexity of CT

testing and data acquisition about 2% of the data produced unrealistic results and were eliminated from analyses.

Two approaches were used to predict damping coefficients and compare them to the reported Case damping coefficients. One approach was based on stress-time units and produced similar values for a certain percentage of the data; however, there was still a significant percentage of values well outside the ranges for the Case factors. A second, viscous energy-based approach produced unitless damping coefficients, which were very similar to the Case values. These coefficients typically were higher for the initial 1000 cycles and in some cases increased over the last 1000 or 2000 cycles.

5.5 CAPWAP[®] Analysis and Results

5.5.1 Overview

The direct analysis of pile driving can be done through the use of PDA data and the CAPWAP[®] software. The damping coefficient used for analysis in CAPWAP[®] and its effect on the soil's bearing capacity is not well understood. Therefore, comparing the CAPWAP[®] damping coefficients of different rebound and non-rebound soils may produce a better understanding of its effect on pile rebound.

5.5.2 Sites Evaluated

As presented previously, five sites were evaluated using Pile Driving Analyzer (PDA) and Test Piles. The sites include 417 & International, Heritage Pkwy, Chaffee Rd, I-4 & 192 and Ramsey Branch. Table 5-14 shows the site name and the test piles description for the sites evaluated:

Table 5-14 Test Piles Description

Site	Test Pile description	Acronym
Chaffee Rd	Pier 2 – Pile 9	PR2PL9
Heritage Pkwy	End Bent 1 – Pile 1	EB1P1
Heritage Pkwy	End Bent 5 – Pile 1	EB5P1
Heritage Pkwy	Interior Bent 3 – Pile 1	IB3P1
Heritage Pkwy	Interior Bent 4 – Pile 1	IB4P10
I-4 & 192	Pier 8 – Pile 4	P8P4
417 & International	End Bent 1 – Pile 14	EB1P14
417 & International	End Bent 2 – Pile 5	EB2P5
Ramsey Branch	End Bent 1 – Pile 1	EB1P1
Ramsey Branch	End Bent 1 – Pile 3	EB1P3
Ramsey Branch	End Bent 4 – Pile 5	EB4P5
Ramsey Branch	End Bent 5 – Pile 2	EB5P2

An overview of the test borings and PDA test piles is presented in Table 5-15, with test pile designation, ground surface, beginning and ending PDA collection elevations. Twelve PDA test piles were evaluated.

Site	Test Pile	Beginning Elevation of PDA collection (ft)	Ending Elevation of PDA collection (ft)
Chaffee Rd	PR2PL9	31.9	-16
	EB1P1	2.1	-89.9
Horitago Plana	EB5P1	-1	-81
пептаде Ркму	IB3P1	-9.3	-91.3
	IB4P10	-10.6	-91.8
I4 & 192	P8P4	70.1	-1.9
117 & International	EB1P14	66.7	0.8
417 & International	EB2P5	51.3	0.1
	EB1P1	-46.6	-80.5
Pameou Branch	EB1P3	-51.7	-71.6
Ramsey Branch	EB4P5	-23.1	-104.8
	EB5P2	-21.7	-78.6

Table 5-15 PDA Test Piles Description

5.5.3 Evaluation Criteria

In order to perform the analysis three criteria needed to be established. They were, the number of hammer-blows per foot, the rebound level, and the side friction from the PDA data.

During pile driving, an average of 120 blows/ft, it means that the pile will have an average final set (net penetration) of 0.1 inches per blow. This behavior, for example, could be due to the high resistance of the soil, which means that the pile achieves its resistance goal, or due to high rebound, in which the final set is relatively small compared to the pile's maximum displacement. According to the current FDOT specification (455-5.10.3), rebound values that are equal to or greater than 0.25 inches are considered high.

In order to analyze the rebound, 12 different blows from 12 test piles at five sites, were evaluated. The criteria used to choose the critical blows were related to blow counts, rebound level and side friction.

Although 120 blows/ft would be considered a high blow count, most of the test piles analyzed did not reach this level. Therefore, based on engineering judgement, a minimum of 60 blows/ft was chosen to be the high blow count criteria.

BDV-28 977-01 results indicated that rebound greater than 0.50 inches may produce better engineering information, plus be easier for the inspector to identify, than 0.25 inches. Again, based on the available and engineering judgement in terms of the rebound, a minimum of 0.45 inches of rebound was considered in the selection of the blows. Note that eleven of the 12 blows chosen met this criterion, with one exception having rebound of 0.41 inches.

Finally, low side friction allows rebound. Although a low side friction-rebound threshold is difficult to define, after evaluating the PDA data, engineering judgement was used and values lower than 110 kips were considered low side friction (SFT-side friction total). A frictionbearing ratio was also calculated by dividing SFT by the PDA estimated total end bearing (EB0end bearing total). These totals include both the static and dynamic components.

5.5.4 Blow Number Selections

The following plots show the blow count, rebound and side friction for all test piles evaluated. The rebound was calculated by subtracting the inspector set from the maximum displacement (DMX). A red dot, shown on each plot, represents the blow selected for the CAPWAP[®] analysis based on 60 blows/foot, 0.45 inches of rebound and SFT of 110 kips or less.

Figure 5-17 End Bent 2 Pile 5

Figure 5-20 Intermediate Bent 3 Pile 1

Figure 5-21 Intermediate Bent 4 Pile 10

5.5.4.3 Chaffee Rd

Figure 5-22 Pier 2 Pile 9

Figure 5-23 Pier 8 Pile 4

5.5.4.5 Ramsey Branch

Figure 5-25 End Bent 1 Pile 3

Figure 5-26 End Bent 4 Pile 5

Figure 5-27 End Bent 5 Pile 2

Table 5-16 is a summary of the chosen CAPWAP® analysis blow, elevation, hammer blows per foot, rebound, side friction (SFT), end bearing (EB0) and percent SFT to EB0 selected from the plots. Both SFT and EB0 are total forces and therefore include the static and dynamic loads. Note that the SFT/EB0 percentage in all twelve cases was below 30%. The averages show, that about 87 blows per foot, with 0.73 inches of rebound, at SFT values of 41 kips and SFT/EB0 percentages of 8%. Note that the limited number of data points results in fairly high standard deviations for these parameters.

Site	Test Pile	BN	Elevation (ft)	Blows/ft	Rebound (in)	SFT (kips)	EB0 (kips)	SFT/EB0
Chaffee Rd	PR2PL9	354	-9.15	75	0.48	77	389	20%
	EB1P1	279	-28.01	32	0.58	24	519	5%
Horitago Pkuny	EB5P1	450	-29.95	71	0.48	19	498	4%
neillage Fkwy	IB3P1	280	-26.82	46	0.55	17	540	3%
14 & 192	IB4P10	158	-27.63	39	0.51	7	455	2%
I4 & 192	P8P4	2260	17.71	100	0.93	76	485	16%
I4 & 192 417 & International	EB1P14	322	51.22	38	0.41	29	537	5%
	EB2P5	1479	3.85	75	0.48	104	643	16%
	EB1P1	654	-63.37	133	0.96	82	580	14%
Pamooy Branch	EB1P3	600	-63.81	150	1.06	0	376	0%
Namsey Dranen	EB4P5	1322	-60.61	171	0.95	51	366	14%
	EB5P2	480	-51.61	109	1.33	0	339	0%
Av	erage			87	0.73	41	477	8%
Standar	d Deviation			44	0.29	34	90	7%

Table 5-16 CAPWAP® Analysis Blows Selected

Notes: PR or P = Pier, EB = End Bent, IB = Intermediate Bent PL or P = Pile,

5.6 CAPWAP[®] Damping Coefficient Sensitivity Analysis

The CAPWAP[®] analysis consists of multiple trials using the CAPWAP[®] automated resources to produce the best match, which has the lowest Match Quality (MQ) number. For this report, the MQ considered was the one related to the wave match, instead of the force or velocity.

Numerous trials were conducted in order to achieve the lowest value of MQ, for all test piles analyzed. The final MQ does not necessarily have to match a certain minimum value, but it has to be as low as possible once all the resources from CAPWAP[®] were used.

CAPWAP[®] has many auto procedures to improve the match quality, after first manually improving certain parameters. In order to manually improve the match, the toe resistance was initially set as 10% of the ultimate resistance (Ru), based on engineering judgement and experience. The shaft resistances, through the shaft elements, were changed based on the visual analysis of the measured wave speed versus the calculated wave speed.

After completing the manual adjustments, the auto procedures were used; such as Auto CAPWAP[®] (AC), Auto Friction (AF), Auto Toe (AT), Auto Quantity Improvement on Standard Parameters (AQ STD).

AC is an auto procedure in which the software will automatically adjust capacity, resistance distribution, toe resistance, damping factors and quakes. AF will make the software adjust the resistance distribution of the toe and the shaft elements. AT will change the main toe parameters such as quake for loading and unloading, gap, damping factors and ultimate resistance and AQ STD will vary the soil parameters within the lower and upper limits specified by CAPWAP.

The CAPWAP® final reports tables for the test piles analyzed are included in Appendix C. CAPWAP® analysis outputs Smith's damping factors for pile shaft and for the pile's toe (SS and ST, respectively). In the CAPWAP® final reports, the table entitled "CAPWAP® Summary Results" shows the average shaft and toe Smith Damping Factor in units of seconds/ft. It also shows a table entitled "CASE Method", in which it is possible to estimate CASE's damping coefficient based on the total resistance and Smith's damping coefficient. Therefore, two different damping factor (Smith's 1960 and CASE's 1974) can be defined for the soil around the pile shaft (average) and pile's toe. However, Case's damping is not going to be considered for analysis, due to the uncertainty on how CAPWAP® defines the damping factor.

5.7 Results and Correlations

The CAPWAP[®] results based on the (a) threshold blow counts, (b) rebound and (c) SFT are summarized below. Rebound was compared to damping factors; then to side friction and finally, to UN.

5.7.1 Rebound versus Damping Factors

Smith's damping factors were determined for all 12 blows analyzed using CAPWAP[®]. Table 5-17 shows the damping factors and the side friction based on the analysis criteria chosen.

Site	Test Pile	Side Friction (kips)	STF/EB0	Rebound (in)	Smith's Shaft Damping (s/ft)	Smith's Toe Damping (s/ft)
Ramsey Branch	EB1P3	0	0%	1.06	0.069	0.133
Ramsey Branch	EB5P2	0	0%	1.33	0.169	0.063
Heritage Pkwy	IB4P10	7	2%	0.51	0.051	0.088
Heritage Pkwy	IB3P1	17	3%	0.55	0.358	0.052
Heritage Pkwy	EB5P1	19	4% 0.48 0.088		0.189	
Heritage Pkwy	EB1P1	24	5%	0.58	0.194	0.111
417 & International	EB1P14	29	5%	0.41	0.171	0.17
Ramsey Branch	EB4P5	51	14%	0.95	0.15	0.024
14 & 192	P8P4	76	16%	0.93	0.211	0.028
Chaffee Rd	PR2PL9	77	20%	0.48	0.027	0.074
Ramsey Branch	EB1P1	82	14%	0.96	0.945	0.163
417 & International	EB2P5	104	16%	0.48	0.182	0.103
Average		41	8%	0.73	0.22	0.10
Standard Devia	ation	34	7%	0.29	0.24	0.05

Table 5-17 CAPWAP[®] Based Smith's Damping Factors

Based on an extensive study on damping and quake for prestressed concrete piles in Florida, McVay and Kuo, (1999), recommended Smith end of driving (EOD) damping factors from approximately 0.05 to slightly greater than 0.40 for Florida sand blends. The majority of the EOD damping factors shown in this work were between 0.05 and 0.3.

An examination of the results in Table 5-17 indicates that Smith's shaft damping factors range from 0.051 to 0.945 and average 0.22, while Smith's toe damping factors range from 0.028 to 0.189 while averaging 0.10. The standard deviations for each indicate that the toe damping factors also have much less deviation from the average. The majority of the shaft and toe damping average factors fall within the recommended range; however, the toe damping factors are much more consistent. Only one CAPWAP[®] analysis, Ramsey Branch EB1P1, produced a damping coefficient above the McVay and Kuo (1999) range. While three analyses produced values below the authors range; Ramsey Branch EB4P5, I4 & 192 P8P4 and Chaffee Rd PR2PL9.

Ten of the 12 Smith shaft damping coefficients fall within the recommended range, and ten of the 12 Smith toe damping coefficients fall within range. When the SFT/EB0 ratio is compared to the acceptable damping range, there seems to be a trend showing that for higher SFT/EB0 values (i.e. between 14 and 20%) the damping coefficients fall outside the

145

recommended range. Although more data must be analyzed, an initial finding is that SFT less than about 30 kips or SFT/EB0 ratios below 15 percent should be the focus of future analyses.

To help describe trends from the results presented in Table 5-17, Figure 5-28 and Figure 5-29 were compiled. They relate the average damping factors to rebound for each site. Figure 5-28 and Figure 5-29 show average Smith's shaft and toe damping factors per site, respectively. Figure 5-28 results show that these average Smith's shaft damping coefficients are higher with higher rebound, which is the opposite of what was expected to produce high rebound. Figure 5-29 shows the average Smith's toe damping coefficient per site is higher for lower rebounds. These findings are based on a very limited number of sites. Therefore, it may not be possible to make conclusions when the data from each site is averaged unless a larger number of sites and PDA test piles were analyzed.

Figure 5-28 Average Rebound and Smith's Shaft Damping Factor per Site

Figure 5-29 Average Rebound and Smith's Toe Damping Factor per Site

5.7.2 Rebound versus CAPWAP® Resistance

The CAPWAP[®] ultimate toe and shaft resistances from all 12 sets of data were compared to rebound. Figure 5-30 shows rebound versus ultimate toe resistance (Ru). A relatively weak linear trend was shown as rebound decreases with increasing toe resistance. This trend may occur since the higher toe resistances prevent movement.

Figure 5-30 Rebound versus CAPWAP® Ultimate Toe Resistance

Figure 5-31 shows a linear trend with a slightly higher regression coefficient exists between CAPWAP[®] ultimate shaft resistance and rebound. This trend was anticipated since increased shaft resistance should prevent or decrease rebound.

Figure 5-31 Rebound versus CAPWAP® Ultimate Shaft Resistance

In summary, the CAPWAP[®] ultimate toe and shaft resistances did relate to rebound, with the shaft resistance showing a promising linear relationship.

5.7.3 Rebound versus PDA Side Friction

A second set of plots were developed with all 12 sets of data. Figure 5-32 and Figure 5-33 show how the rebound varies with side friction and side friction normalized by the end bearing resistance (EB0) for each test pile, respectively.

Figure 5-33 Rebound versus PDA normalized side friction

Note that both plots are similar but show no clear trends. The main finding is that damping in terms of PDA total side friction less than 30 percent of the total pile capacity does not clearly correlate with rebound.

5.7.4 Rebound versus UN

The UN parameters determined by CAPWAP[®] during the signal matching process were plotted versus rebound, to produce the graph shown in Figure 5-34.

Figure 5-34 Rebound versus UN

Again, no clear trends were shown. However, the limited number of blows analyzed was not sufficient to formulate a conclusion at this point.

5.7.5 Findings

Of the three main CAPWAP® unknowns: ultimate static resistance, quake and damping, only damping was analyzed to produce these findings.

Smith's toe damping coefficients were more consistent than the Smith shaft damping coefficients, although 10 of the 12 CAPWAP® blows analyzed produced acceptable coefficients for both shaft and toe resistances.

The CAPWAP[®] based damping factors did show relationships to rebound, with the shaft damping coefficients showing a more promising relationship than toe damping.

The PDA SFT and SFT/EB0 analyses produced poor comparisons to rebound indicating that they should be avoided when attempting to understand how rebound relates to pile capacities.

For the piles analyzed, rebound seemed to occur only when the side friction was less than 30 % of the total pile capacity determine from PDA data.

When SFT is less than about 30 kips or the SFT/EB0 percentage is below about 20% reasonable damping coefficients were produced with CAPWAP[®].

6 PDM, CMS, and PDA Measuring System Evaluations

Six sites in Central and Northeastern Florida were tested. Instrumented test piles were evaluated at all sites except Port Canaveral. Table 6-1 show the site names the types of tests performed and Figure 6-1shows their locations. PDM and CMS testing was attempted at all sites, with the exception of Port Canaveral. No camera testing was performed at Port Canaveral because it was a preliminary PDM evaluation site for the research team to learn how to use the equipment. Severe rain and thunderstorms along with equipment problems prevented PDM testing to be completed at Baldwin Bypass near Jacksonville Florida.

Testing Description	Site Name	Pile Location	Length of Pile (ft)	Successful PDA Testing	Successful PDM Testing	Successful CMS Testing
	Port Canaveral	N Cargo Berth 10	92		\checkmark	
	Baldwin Bypass	EB 4 Pile 1	82			1
Pile	Reedy Creek	EB 1 Pile 1	120	1	1	1
	Dunns Creek	Pier 4 Pile 10	110	1	\checkmark	1
	Ellis Road	EB 1 Pile 8	140	1	\checkmark	1
CDT	Wekiva Parkway	WLC 2 and WLC 3			✓	1
541	Dunns Creek	Near Peir 4 Pile 10			\checkmark	1

Table 6-1 PDA, PDM and CMS Testing Summary

Figure 6-1 Google Maps® test site locations

6.1 PDM Test Pile Results

6.1.1 Port Canaveral North Cargo Berth 8 PDM Testing

This site was chosen to allow the research team to gain experience with the Inopiles PDM equipment, therefore, no camera evaluations were conducted. Over 400, 24-inch square prestressed concrete piles were being driven for the North Cargo Berth 8 construction. The research team received permission to work on site for several weeks during the pile installation process.

6.1.1.1 Day $1 - \frac{6}{3}/2018$ PDM Setup and Testing Process

The setup was mostly executed as specified in the methods described in Chapter 4. The tape used was the Original tape supplied by Inopiles. The tape was placed at 2 feet increments for the first 30 feet of the pile and switched to 4 feet increments for the remaining 60 feet. These smaller distances between reflective tapes were used to try and collect more data than possible with 5 feet increments, also to see if it was possible for the operator to enter the parameters and get set for the next test given the smaller window of time. The PDM was placed on a tripod so that its field of view was above the pile driving template. The PDM offset distance was 29.95 feet from the pile, determined by the laser distance finder. This offset results in an active zone length of 1.36 feet. A tent was set up to provide shade for the equipment. The tablet was used for data collection.

This testing was the first successful instance of gathering PDM test data from pile driving. The 2-foot increments were spaced too closely to allow the computer operator time to prepare the input for the subsequent PDM tests. The 4-foot increments produced the same problem, therefore the research team collected PDM data at 8-foot increments (i.e., for every other tape location on the pile). The 8-foot testing resulted in only 3 tests for the 92-foot-long pile. It was then determined that a standard of 5-foot increment would be reasonable as long as the next test was set up quickly. As a result of the testing at Por Canaveral tape was placed at 5-foot increments on the piles at the remaining sites.

154

Figure 6-2 Images of Pile and PDM Setup for Port Canaveral Day 1 (Photos by Dr. Cosentino)

6.1.1.2 PDM Data

Table 6-2 is a summary from the three successful PDM tests. No results were obtained for the first 30 feet of driving where 2-foot increments were used between the reflective tapes. Three sets of data were obtained for the remaining 60 feet of driving that used 4 feet increments between the reflective tapes. The data is approximately 8 feet apart as it only captured every other reflective tape. The complete set of PDM data will be presented in the final report Appendices.

Table 6-2 PDM Data for Port Canaveral-Day 1

PDM Testing Range	Useable Data	% of Active Zone	# of Blows	Set (in)) Rebound (in)		
(ft)	(in)			Min	Avg	Max	Min	Avg	Max
37.131-38.099	11.62	71	13	0.34	0.41	0.51	0.23	0.29	0.33
69.426-70.223	9.56	59	10	0.73	0.8	0.89	0.08	0.12	0.14
76.003-76.262	3.12	19	10	0.36	0.47	0.59	0.13	0.16	0.19

6.1.1.3 Day 2 - 6/4/2018 PDM Setup and Testing Process

The setup was mostly executed as specified in the methods described in Chapter 4. The tape used was again the Original tape supplied by Inopiles. The PDM was placed on a tripod so

that its field of view was above the template. The PDM offset distance was 30.48 feet from the pile, determined by the laser distance finder. This distance resulted in an active zone length of 1.38 feet. A tent was set up to provide shade for the equipment. The tablet was used for data collection. Of the 14 tests attempted 12 yielded useful data.

Figure 6-3 Images of Pile and PDM Setup for Port Canaveral Day 2 (Photo by Dr. Cosentino)

6.1.1.4 PDM Data

Table 6-3 is a summary from the twelve successful PDM tests. It shows the amount of useable data within the active testing zone for each depth the percentage of the active zone within which results were able to be obtained, the number of hammer-blows within the active testing zone and the minimum, maximum and averages for set and rebound. Note as the set increases (i.e., movement per blow) the number of blows decreases. The complete set of PDM data will be presented in the final report Appendices.

PDM Testing Range	Useable Data	% of Active Zone	# of Blows	Set (in)			Rebound (in)		
(ft)	(in)			Min	Avg	Max	Min	Avg	Max
15.157-16.392	14.82	59	23	0.56	0.69	0.83	0.23	0.28	0.31
26.632-27.276	7.73	47	27	0.26	0.3	0.32	0.41	0.42	0.43
30.303-31.347	12.53	76	57	0.2	0.23	0.28	0.46	0.47	0.48
36.165-37.204	12.47	75	19	0.62	0.67	0.75	0.09	0.17	0.19
41.384-42.060	8.12	49	11	0.75	0.81	0.89	0.11	0.13	0.14
46.463-47.345	10.58	64	12	0.89	0.96	1	0.13	0.14	0.15
51.19-51.826	7.63	46	11	0.68	0.76	0.83	0.1	0.12	0.14
56.195-56.810	7.38	45	10	0.8	0.88	0.09	0.07	0.11	0.11
61.600-62.254	7.85	47	10	0.59	0.87	0.92	0.13	0.15	0.17
66.541-67.209	8.02	78	9	0.78	1.01	1.06	0.16	0.18	0.21
71.402-72.260	10.3	62	10	0.96	1.15	1.22	0.13	0.16	0.18
76.404-77.204	9.6	58	9	0.89	1.2	0.32	0.12	0.13	0.14

Table 6-3 PDM Data for Port Canaveral-Day 2

6.1.2 Baldwin Bypass End Bent 4, Production Pile 1: PDM Testing 5/14/18

6.1.2.1 PDM Setup and Testing Process

The setup was mostly executed as specified in the methods described in Chapter 4. The reflective tape placed on the pile was the Original tape provided by Inopiles. It was spaced at 5-foot intervals that matched the 5-foot markings on the pile (Figure 6-4).

Figure 6-4 Baldwin Bypass PDM and CMS 5-foot spacing pile markings

The PDM was not placed on a tripod, but it was stacked on a box covered by a thick layer of foam. The intention of the foam was to dampen vibrations and therefore mitigate signal noise to the PDM and cameras from ground vibrations. A tent was set up to protect the equipment from the environment; which for this site meant keeping it out of the rain. The tablet provided by Inopiles to operate the PDM, malfunctioned and would not power on, despite having a full charge. Numerous attempts were made to remedy this problem; however, none were successful. They included turning the Microsoft Surface Pro tablet on and off, logging out and logging in to the tablet, using a 110 Volt power supply instead of the battery. Therefore, no PDM data was obtained during driving.

Figure 6-5 Images of Pile and PDM setup for Baldwin Bypass (Photos by Cosentino)

6.1.2.2 PDM Lesson Learned

There were lessons learned/observations made from attempting PDM testing at the site. It was the researchers first experience with instrumented pile driving using RADISE equipment. The heavy rains forced the team to improve our setup procedures.

Placing the PMD on the padding proved difficult, therefore it was decided to it would be placed on a tripod for future testing. This option allows the users to vary the PDM height to produce the optimum viewing angle for the equipment.

The PDM's laser distance finder was difficult to use in the heavy rains. The red dot reflected off of rain drops before it could be seen on the pile. Therefore, a tape measure would be used in addition to the laser finder on subsequent sites.

The problem with the tablet was remedied by taking it to the Florida Tech IT department where diagnostic tests were run to fix the issue. Once returned the tablet worked properly. In order to reduce the chance of tablet problems, the PDM software was added to a Florida Tech laptop. Both the tablet and the laptop were transported to subsequent sites.

6.1.3 Reedy Creek End Bent 1, Pile 12: PDM Testing 7/19/18

6.1.3.1 PDM Setup and Testing Process

The setup was mostly executed as specified in the methods described in Chapter 4. The test pile evaluated was at End Bent 1, Pile 12 as shown in Figure 6-6. The reflective tape used was the 3M tape purchased by the research team. The PDM was placed on a tripod set low to the ground with its field of view unobstructed. The PDM offset distance was 26.90 feet from the pile. This distance resulted in an active zone length of 1.22 feet. A tent was set up to provide shade for the equipment. The laptop was used for data collection. Of the 11 tests attempted 3 yielded useful data.

Figure 6-6 Images of End Bent 1, Pile 12 and PDM Setup for Reedy Creek (Photo by Dr. Cosentino)

6.1.3.2 PDM Data

Table 6-4 is a summary from the three successful PDM tests. Successful testing was accomplished at 65, 98 and 109 pile depths. Of the approximately 15 inch (i.e., 1.22 ft) active measuring zone only the 65-foot testing produced results for more than 50% of this zone. The 98- and 109-foot testing produced results for 3 and 7 blows, respectfully. In summary, PDM testing was successful; however, it produced limited data for analysis. This site did not produce pile rebound. The sets were slightly less than 0.9 inches. PDA sets for these pile depths, based on the inspectors input ranged from 0.86 to 1 inch, with 1 inch reported for the 65-foot depth. The complete set of PDM data are in Appendix A

PDM Testing Range	Useable Data	% of Active Zone	# of Blows	Set (in)			Rebound (in)		
(ft)	(in)		-	Min	Avg	Max	Min	Avg	Max
64.623-65.591	11.62	79	16	0.47	0.86	1.46	-0.06	0	0.04
98.910-99.049	1.67	11	3	0.81	0.85	0.89	0.06	0.06	0.06
109.364-109.767	4.84	33	7	0.77	0.81	0.88	0.04	0.06	0.07

Table 6-4 PDM Data for Reedy Creek – 3M Tape

6.1.4 Dunns Creek PDM Pile 10 at Pier 4 Testing

6.1.4.1 Test Pile Monitoring 9/19/18

Pile 10 at Pier 4 at Station 436 +37 was monitored using both PDM and CMS systems. Testing began on September 19th at about 7 AM with temperatures in the mid 70's and continued until problems installing the test pile persisted around 11:00 AM with temperatures in the mid 90's. Figure 6-7 shows the test pile being lifted into the template.

Figure 6-7 Dunns Creek Pile 10 at Pier 4 Installation

6.1.4.2 PDM Setup and Testing Process

The setup was executed mostly as specified in the methods described in Chapter 4. The tape used was the 3M tape. The PDM was placed on a tripod set so the field of view was unobstructed by the frame. The PDM rod was offset 30.02 feet from the pile. This distance resulted in an active zone length of 1.36 feet. A tent was set up to provide shade for the data

processing but not for the PDM itself due to restrictions caused by nearby equipment. The laptop was used for data collection. Of the 2 tests attempted 1 yielded useful data.

Figure 6-8 Images of Pile and PDM Setup for Dunns Creek (Photo by Dr. Bostater)

6.1.4.3 PDM Data

Table 6-5 is a summary from a zone of successful PDM testing from Dunns Creek. All driving observed at depths greater than 50 feet produced high rebound. With visual rebound observations in the 1 inch range. Just over 13 inches of PDM data was useable, or 82% of the

data within the PDM active recording (16 inch) zone. One-hundred and thirty hammer blows were recorded producing an average set of 0.09 inches and an average rebound of 1.01 inches. Note that the PDM measurements confirmed the visual observations.

Table 6-5 PDM Data for Dunns Creek Test Pile-3M Tape

PDM Testing Range	Useable Data	% of Active Zone	# of Blows	Set (in)		Rebound (in)			
(ft)	(in)			Min	Avg	Max	Min	Avg	Max
67.592-68.701	13.31	82	130	0.07	0.09	0.12	0.75	1.01	1.24

6.1.5 Ellis Overpass PDM Test Pile 8 at Bent 1 Testing 11/30/18

Test pile 8 at bent 1 at station 77+14.90 along the centerline of the roadway for the Ellis Road I-95 Overpass for Bridge number 700239 was monitored using PDM and CMS equipment on November 30, 2018. Mostly sunny skies with temperatures in the mid 70 were encountered. Testing began about 8 AM and continued until about 1 PM.

6.1.5.1 PDM Setup and Testing Process

The setup was mostly executed as specified in the methods described in Chapter 4. The tape used was the 3M tape. The PDM was placed on a tripod set so the field of view was unobstructed. The PDM offset distance was 26.25 feet from the pile. This distance resulted in an active zone length of 1.19 feet. A tent was set up to provide shade for the equipment. The laptop was used for data collection.

Figure 6-9 Images of Pile and PDM Setup for Ellis Overpass (Photo by Dr. Cosentino)

6.1.5.2 PDM Data

Of the eight tests attempted, with 185 possible data points, two depths yielded useful data. Of the 90 data points or hammer blows recorded with the PDM within these two depths 30 were useful.

The PDM depths greater than 95 feet had to be adjusted due to software limitations. The depths listed as 16, 22 and 28 feet were increased by 95 feet to produce the actual depths. The values below represent the actual depth of the pile. Table 6-6 is a summary from the two successful PDM tests. They indicate that both the set and rebound was about 0.2 inches. The PDA data indicates an average set of 0.17 inches with an average rebound of 0.32 inches. The complete set of PDM data are in Appendix A

PDM Testing Range	Useable Data	% of Active Zone	# of Blows	Set (in)		Rebound (in)			
(ft)	(in)			Min	Avg	Max	Min	Avg	Max
111.496-111.913	5	35	25	0.17	0.2	0.21	0.21	0.24	0.24
117.001-117.060	0.71	5	5	0.17	0.19	0.2	0.15	0.17	0.19

Table 6-6 PDM Data from Ellis Overpass Test Pile- 3M Tape

6.2 PDM SPT Results

6.2.1 Dunns Creek SPT Tests 3/14/19

6.2.1.1 PDM Setup and Testing Process

The setup was mostly executed as specified in the method for SPT testing in Chapter 4. The tape used was the Outdoor tape purchased by the research team. The PDM was placed on an adjacent footing as it provided the perfect distance from the SPT rod as well as the correct height for the field of view to be unobstructed. The PDM offset distance was 26.90 feet from the rod. This distance resulted in an active zone length of 1.22 feet or approximately 15 inches. A tent was used to shade the equipment. The laptop was used for data collection. All 5 attempts yielded useful data.

Figure 6-10 Images of SPT and PDM Setup for Dunns Creek (Photos by Robert Rogulski)

6.2.1.2 Dunns Creek PDM data

Table 6-7 is summary from the five successful PDM tests. Data was recorded from approximately 46 to 60 feet as shown. The PDM testing range is shown as useable data in inches in column 2. Between about 6 and 12 inches were able to be evaluated with the PDM. The percentage of this data that was useable is shown in Column 3, it ranged from about 40 to 80 %. The corresponding number of SPT automatic hammer blows for the useable data is shown in Column 4. Minimum, average and maximum sets and rebounds are shown in the last two columns. Data from all five depths produced "negative" rebound according to the PDM software, which results when the PDM software interprets the rod movements as shown in Figure 6-11. The blue line is the software's interpreted movements and the light gray line is the actual recorded movements. The figure shows that the end of the PDM linear rod movement is denoted with a blue dot within the straight blue line; however, the light gray line shows a different displacement versus time response as the actual rod movements. The gray line increases nonlinearly after the blue dot and the software interprets that continual movement as rebound. Because it is not in the opposite direction as the downward movement it becomes negative. From a practical standpoint there is no rebound, but rather nonlinear time-dependent movements that have also been observed during cyclic triaxial testing of rebound soils. In summary, this additional downward rod movement may be the indication that the soils are the rebound soils as they display time-dependent movements along the light gray line. The negative values for rebound show that the PDM software improperly interprets rebound. The complete set of PDM data are in Appendix A

PDM Testing Range	Useable Data	% of Active Zone	# of Blows	Set (in)			Rebound (in)		
(ft)	(in)			Min	Avg	Max	Min	Avg	Max
35.659-36.142	5.8	40	2	5.81	6.69	7.57	-4.02	-2.76	-1.5
39.859-40.696	10.04	69	5	1.46	2.19	3.09	-0.43	-0.15	-0.02
49.698-50.650	11.42	78	6	1.46	1.97	2.75	-0.41	-0.19	-0.08
54.761-55.653	10.7	73	6	1.25	2.3	3.07	-0.45	-0.3	-0.11
59.698-60.646	11.38	78	9	0.84	1.37	2.35	-0.18	-0.04	0.03

Table 6-7 PDM Data for Dunns Creek SPT

Figure 6-11 Wekiva Parkway 49.228-49.852 ft PDM blow 1 Indicating Negative Rebound

6.2.2 Wekiva Parkway Wildlife Crossings 2 and 3 Testing

PDM and CMS evaluations were performed on two test borings with SPT, at two wildlife crossings along the Wekiva Parkway (i.e. WLC 2 and WLC3). Testing was conducted on consecutive days. Weather conditions for both days was similar, with mostly sunny skies and temperatures ranging from the low 70's to upper 80's.

6.2.2.1 Day 1 5/7/19 WLC 2 - PDM Setup and Testing Process

The setup was executed mostly as specified in the methods for SPT testing in Chapter 4. The tape used to mark the SPT rods was the Outdoor tape. The PDM was placed on a tripod set so the field of view was unobstructed. The PDM offset distance was 26.25 feet from the rod. This distance resulted in an active zone length of 1.19 feet. The equipment was kept under shade by the nearby wall and bridge abutment. The laptop was used for data collection. Of the 6 PDM tests attempts; 5 yielded useful data. During the 6th test the SPT rods did not penetration into the ground.

Figure 6-12 Images of SPT and PDM Setup for Wekiva Parkway Day 1 (Photos by Dr. Cosentino)

6.2.2.2 Day 1 5/7/19 WLC 2 - PDM Data

Table 6-8 is a summary from the five successful PDM tests. Data was recorded from 49 to 70 feet as shown. The PDM testing range is shown as useable data in inches in column 2. Between 6 and 12 inches were able to be evaluated with the PDM. The percentage of this data that was useable is shown in Column 3, it ranged from about 50 to 80 %. The corresponding number of SPT automatic hammer blows for the useable data is shown in Column 4. Minimum, average and maximum sets and rebounds are shown in the last two columns. Data from the first two depths again produced negative rebound, as shown in Figure 6-11. As stated previously, this additional downward rod movement is not rebound, but may be the indication that the soils are rebound soils as they display nonlinear time-dependent movements. The complete set of PDM data are in Appendix A.

PDM Testing Range	Useable Data	% of Active Zone	# of Blows	Set (in)			Rebound (in)		
(ft)	(in)			Min	Avg	Max	Min	Avg	Max
49.288-49.852	6.77	47	4	1.1	2.56	3.47	-0.83	-0.41	0
55.089-55.843	9.05	63	8	0.96	1.13	1.32	-0.02	0	0.02
59.104-59.941	10.04	70	12	0.61	0.85	1.19	0.02	0.03	0.04
64.088-64.967	10.55	74	17	0.42	0.66	1.09	0.02	0.04	0.07
69.029-69.964	11.22	79	26	0.24	0.47	0.66	0.02	0.09	0.15

Table 6-8 PDM Data for Wekiva Parkway-Day 1 WLC 2

6.2.2.3 Day 2 5/8/19 WLC 3 – PDM Setup and Testing Process

The setup was mostly executed as specified in the methods for SPT testing in Chapter 4. The tape used to mark the SPT rods was the Outdoor tape. The PDM was placed on a tripod set so the field of view was unobstructed. The PDM offset distance was 27.92 feet from the rod. This distance resulted in an active zone length of 1.27 feet. The equipment was kept under shade provided by construction work on a nearby bridge. The laptop was used for data collection. Of the 6 tests attempts 5 yielded useful data. During the 6th attempt the SPT rod could not be driven and therefore no movements were recorded.

Figure 6-13 Images of SPT and PDM Setup for Wekiva Parkway WLC 3 Day 2 (Photos by Dr. Cosentino)

6.2.2.4 Day 2 5/8/19 WLC 3 - PDM Data

The complete set of data are presented in Appendix A. Table 6-9 is a summary from the five successful PDM tests. The PDM testing range is shown as useable data in inches in column 2. Between about 9 and 12 inches were able to be evaluated with the PDM. The percentage of this data that was useable is shown in Column 3, it ranged from about 60 to 75 %. The corresponding number of SPT automatic hammer blows for the useable data is shown in Column 4. Minimum, average and maximum sets and rebounds are shown in the last two columns. Data from three of the depths once again produced negative rebound. Negative PDM rebound from SPT testing is consistently occurring in possible rebound soils. The complete set of PDM data are in Appendix A

PDM Testing Range	Useable Data	% of Active Zone	# of Blows	Set (in)			Rebound (in)		
(ft)	(in)			Min	Avg	Max	Min	Avg	Max
58.632-59.402	9.24	61	5	1.6	1.87	2	-0.19	-0.16	-0.12
64.085-65.000	10.98	72	15	0.61	0.76	1.06	0	0.03	0.05
69.091-70.043	11.42	75	14	0.65	0.89	1.11	-0.1	0.02	0.03
74.065-75.023	11.5	75	25	0.18	0.51	0.82	0.02	0.11	0.23
79.094-80.000	10.87	71	15	0.6	0.79	1.17	-0.06	0.01	0.06

Table 6-9 PDM Data for Wekiva Parkway-WLC 3 Day 2

6.3 PDM, CMS, and PDA Comparisons for Test Piles

As shown in Table 6-1, PDM, PDA and CMS data were obtained at three of the six sites, Reedy Creek, Dunns Creek and Ellis Road Overpass. The PDM—PDA comparisons are presented in this section.

6.3.1 Reedy Creek PDM – PDA Comparisons

PDA data produces two values for set. The first is DFN which is the set calculated from the double integration of the accelerometers. The second is SET which represents inspector set, determined as 1 over the inspectors blow counts blows for each foot. Therefore, SET is just one value for an entire foot. Rebound is calculated using both DFN and SET. In this instance DFN and SET were exactly the same. The average for the nearest foot of PDA data was used to be compared to the PDM data.

Table 6-10 shows comparisons between PDM and PDA for three testing depths, one in the 64-foot range, one in the 99-foot range and the third in the 109-foot range. The 64-foot data consists of 16 blows, the 99-foot data consists of three and the 109-foot data consists of eight blows. In all cases the PDA digital information matched the inspector-based information, therefore there are no differences between the data from both at any of the depths. The largest variation occurred at the 64-foot range, while the other two depths produced nearly identical data between PDM and PDA testing.

In summary, the PDM produced acceptable data for all three depths at the Reedy Creek site. Note there is a very limited amount of comparable data at this time (27 total blows);

therefore, more testing and evaluations are needed to verify these preliminary findings. The complete set of PDM data are in Appendix A

Method	PDM Testing Range (ft)	Average Set (in)	Difference from PDM (in)	Average Rebound (in)	Difference from PDM (in)
PDM	64.623- 65.591	0.86		0	
PDA DFN	64.64-65.92	1.03	0.17	0.08	0.08
PDA SET	64.64-65.92	1.03	0.17	0.08	0.08
PDM	98.910- 99.049	0.85		0.06	
PDA DFN	98.60-99.00	0.86	0.01	0.01	-0.05
PDA SET	98.60-99.00	0.86	0.01	0.01	-0.05
PDM	109.364- 109.767	0.81		0.06	
PDA DFN	109.3-109.8	0.80	-0.01	0.06	0.00
PDA SET	109.3-109.8	0.80	-0.01	0.06	0.00

Table 6-10 PDM versus PDA for Reedy Creek

6.3.2 Dunns Creek PDM – CMS – PDA Comparisons

A visual signal matching approach was used to compare PDM and CMS Dunns Creek data sets. Both PDM and CMS data were inspected for similar inconstancies or anomalies in a set within a known region or depth. Once an anomaly was detected within the CMS data zone a similar anomaly was searched for within the PDM data. This process allowed the PDM anomalies to be directly related to a specific hammer blow during driving. Knowing a PDM blow, the corresponding CMS blow was then determined. Subsequent data was then matched to produce reliable set and rebound comparisons.

6.3.2.1 PDM versus CMS

In this case it was possible to match blows for PDM and CMS data. Within both data sets there was an anomalous blow that produced a set nearly 4 times greater than average. It was therefore assumed that this blow is a matching blow from which all others may be compared.

Table 6-11 is the comparison of 20 data points between 67.661 and 67.828 feet. Average PDM and CMS sets were very similar as were the standard deviations. PDM and CMS rebounds were similar; however, the PDM rebounds are slightly higher than the CMS rebounds. Figure 6-14 shows a plot of PDM and CMS sets. This plot shows one set of data at about 0.40 inches and the remaining set data in the 0.05 to 0.1 inch range. A line of equality was included to show how the two sets of data relate. In general, they are scattered both above and below this line. Figure 6-15 shows a comparison between the rebound for the PDM and CMS. The trend line visually represents the weak relationship. A line of equality was again included to show how the two sets of data relate. In general, they are scattered below this line, indicating that the PDM rebound exceeds the CMS rebound. The PDM data are in Appendix A and the CMS data are in Appendix B.

Depth (ft)	PDM set (in)	PDM Rebound (in)	CMS set (in)	CMS Rebound (in)
67.661	0.12	1.36	0.08	0.91
67.697	0.43	1.01	0.39	0.94
67.7	0.06	1.04	0.09	0.83
67.707	0.06	1.05	0.09	0.91
67.713	0.09	1.09	0.1	0.9
67.72	0.07	1.11	0.05	0.86
67.726	0.08	1.12	0.06	0.93
67.733	0.09	1.15	0.12	0.89
67.74	0.08	1.17	0.08	0.91
67.749	0.09	1.17	0.06	0.91
67.756	0.08	1.19	0.1	0.84
67.762	0.09	1.19	0.1	0.9
67.772	0.12	1.21	0.09	0.91
67.782	0.12	1.21	0.06	0.39
67.792	0.09	1.22	0.09	0.92
67.799	0.08	1.21	0.1	0.93
67.805	0.08	1.21	0.07	0.92
67.808	0.07	1.21	0.08	0.85
67.818	0.09	1.21	0.08	0.9
67.828	0.13	1.22	0.08	0.9
Average	0.11	1.17	0.1	0.87
Std Dev	0.08	0.08	0.07	0.12
]	Difference from	n PDM	-7.00%	-25.25%

Table 6-11 PDM versus CMS for within 67-foot range at Dunns Creek Test Pile

Figure 6-14 PDM set versus CMS set for Dunns Creek Pile

Figure 6-15 PDM Rebound versus CMS Rebound for Dunns Creek Pile

6.3.2.2 Dunns Creek Test Pile PDM versus PDA

The Dunns Creek test pile PDM and PDA data movements from 67.59 to 68.70 feet were compared as shown in Table 6-12. Average sets and rebounds were determined from 25 hammer blows. PDA data produced larger DFN values (i.e. called digital sets or dSET) than the inspector-based sets or iSET. The rebound based on DFN was therefore an order of magnitude smaller than rebound based on inspectors set. Again, there was visual evidence of rebound in the 1 inch range at these depths, indicating that the DFN may not be reliable in this instance.

Method	Testing Range (ft)	Average Set (in)	Average Rebound (in)	Difference from PDM (in)
PDM	67.592-68.701	0.09	1.01	
PDA dRebound	67.59-68.70		0.12	-0.89
PDA iRebound	67.59-68.70		1.29	0.28
PDA dSET	67.59-68.70	1.37		1.28
PDA iSET	67.59-68.70	0.22		0.13

Table 6-12 PDM versus PDA for Dunns Creek Test Pile

6.3.3 Ellis Road PDM – PDA Comparisons

PDA DFN and SET's were compared to the PDA DFN and SET's at two depths. Note that the raw PDM depths were recorded at 16 and 22 feet, however a 95-foot adjustment had to be included in order for these depths to be correct.

At the upper level (111 feet) the average PDM set was slightly higher (0.04 inches) than the inspector-based set and 0.15 inches higher than the digitally based set DFN. The rebound based on the inspector's data was nearly identical to the PDM rebound (0.01 inch), while the digital rebound was 0.11 inches higher than the PDM rebound. In summary, the PDM data matched the PDA inspector-based data better than the PDA digitally based data.

At the lower level (117 feet) the average PDM set was very similar to than the inspectorbased set (0.01 inches) and 0.04 inches higher than the digitally based set DFN. The rebound based on the inspector's data was 0.10 inches higher than the PDM rebound, while the digital rebound was 0.13 inches higher than the PDM rebound. In summary, the PDM data again matched the PDA inspector-based data better than the PDA digitally based data.

In this instance DFN was smaller than SET which also led to larger values for rebound. The average for the nearest foot of PDA data was used to be compared to the PDM data in Table 6-13. The full PDA data will be presented in the final report Appendices.

Method	PDM Testing Range (ft)	Average Set (in)	Difference from PDM (in)	Average Rebound (in)	Difference from PDM (in)
PDM	111.496- 111.913	0.20		0.24	
PDA DFN	111.49- 111.9	0.05	-0.15	0.35	0.11
PDA SET	111.49- 111.9	0.16	-0.04	0.25	0.01
PDM	117.001- 117.060	0.19		0.17	
PDA DFN	117.0- 117.06	0.15	-0.04	0.30	0.13
PDA SET	117.0- 117.06	0.18	-0.01	0.27	0.10

Table 6-13 PDM versus PDA from Ellis Overpass Test Pile

6.4 PDM and CMS Comparisons for SPT

Using the data from the 39.859 to 40.696 SPT testing at Dunns Creek, it was possible to match PDM and CMS data. Table 6-14 presents the PDM sets and rebounds that correspond to the CMS sets and rebound. Since each new section of rod represents a separate test, matching data required listening to the audio of the CMS videos to determine which set of PDM data could be matched. Matching the blows was achieved by comparing the trends seen in the set for both methods. It was assumed that these trends matched such that matching blows could be established for the comparisons. PDM and CMS sets were similar, however, the CMS sets were about 15 % higher. Note that using a percentage to make a comparison may be misleading as the values are all in the 2 inch range. PDM and CMS rebounds although similar, are opposite in sign because the PDM software interprets the SPT rod movements as shown in Table 6-7. The complete set of CMS data is presented in the Appendices.

Depth (ft)	PDM set (in)	PDM Rebound (in)	CMS set (in)	CMS Rebound (in)
39.859	1.46	-0.02	1.6	0.01
39.98	1.52	-0.02	1.6	0.03
40.105	1.8	-0.13	2	0.11
40.256	3.02	-0.43	3.21	0.11
40.509	2.26	-0.09	3.14	0.04
Average	2.01	-0.14	2.31	0.06
Std Dev	0.66	0.18	0.81	0.04
а — — — — — — — — — — — — — — — — — — —	Difference fr	om PDM	14.87%	-144.78%

Table 6-14 PDM versus CMS for Dunns Creek SPT-1

Figure 6-16 shows the data PDM and CMS sets from the 39.859 to 40.696 SPT testing. The line of equality was added and shows that the CMS sets are slightly larger than the PDM sets. Visually the plot indicates a promising relationship based on 5 data points. Additional testing is required to substantiate this finding.

Figure 6-16 PDM Set versus CMS Set from 39.859 to 40.696 feet at Dunns Creek SPT-1

Figure 6-17 shows the Dunns Creek 39.859 to 40.696 feet PDM SPT data. The upper numbers along the graph are maximum displacements (DMX) and the lower numbers are SET, therefore, rebound is DMS-SET. There is a blue dot at the maximum displacement where the PDM software interprets as the end of the linear response range from the rods. There is a continual movement downward of the rods after this point. This continued downward movement is interpreted as negative rebound by the PDM software and therefore, its absolute value was used in the analyses. Figure 6-18 is an enlargement of the last three blows, which more clearly show the continued movement following the blue dot or end of the linear range.

Figure 6-17 Dunns Creek PDM SPT Results

Figure 6-18 Dunns Creek PDM SPT Call-out showing Time-Dependent Movements

Figure 6-19 shows a PDM and CMS comparison between the rebound from 39.859 to 40.696 feet. The negative PDM rebounds are converted to absolute values for this plot. There is a possible relationship between the CMS and absolute values of the PDM rebound, however, there is limited data and one data point is clearly showing differences between the two techniques.

Figure 6-19 PDM Rebound versus CMS Rebound from 39.859 to 40.696 feet at Dunns Creek SPT-1

For the 59.698 to 60.646 SPT PDM data it was again possible to match PDM and CMS blows. Data from the last three blows within this region was used for this comparison. Because each new section of rod represents a separate test it required listening to the audio of the CMS videos to determine which set of PDM data they matched. Matching the blows was achieved by comparing the trends seen in the set for both methods. It was assumed that these trends corresponded such that matching blows could be established for the comparisons. Table 6-15 is a summary of PDM and CMS data at a depth of about 60.5 feet. PDM set and rebounds were compared to CMS sets and rebounds. The three sets from both devices are very similar, while the three rebounds are not.

Depth (ft)	PDM set (in)	PDM Rebound (in)	CMS set (in)	CMS Rebound (in)
60.482	1.13	1.13	1.15	0.03
60.574	1.13	1.13	1.14	0.03
60.646	0.84	0.87	0.96	0
Average	1.04	1.04	1.08	0.02
Std Dev	0.14	0.12	0.09	0.01
]	Difference fro	m PDM	4.41%	-98.08%

Table 6-15 PDM versus CMS for Dunns Creek 60-foot Depth SPT-2

Figure 6-20 shows a comparison between the set for the PDM and CMS. The trend line visually represents the promising relationship, because the three sets of data are near the line of equality. Additional testing is needed to validate this finding.

Figure 6-20 PDM set versus CMS set for Dunns Creek SPT-2

Figure 6-21 shows a comparison between the rebound for the PDM and CMS. The relationship carries no values as the values for CMS rebound are incorrect.

Figure 6-21 PDM Rebound versus CMS Rebound for Dunns Creek SPT-2

6.5 PDM Summaries

Table 6-16 displays the summary of the PDM data from pile and SPT testing. Of all the attempted tests on piles 55% yielded useable results. Of the useable results, an average 52% of the data within the active zone was acceptable. Of all the tests attempted on SPT rods 88% yielded useable results. Of those results an average 68% of the data within the active zone was acceptable.

This information indicates that using the PDM on SPT rods was more successful than using it on piles as they were driven. The reason for this is that the PDM software requires the user to input data for each test location along the pile and this task is often not completed before the reflective tape enters the active measuring zone during pile driving. However, there is sufficient time to complete it during the time intervals between SPT tests.

Tests	% Of Useable Test Data	Average % Of Active Zone	Standard Deviation	Average Set (in)	Standard Deviation	Average Rebound (in)	Standard Deviation
PDM-Pile	55	52	22	0.68	0.33	0.22	0.21
PDM-SPT	88	68	11	1.67	1.55	-0.24	0.71

Table 6-16 Summary of PDM data for Piles

6.5.1 Summary of PDM-CMS Comparisons

Table 6-17 displays the summary of the CMS-PDM comparisons from both pile and SPT testing. The CMS-PDM comparisons are much better for set than for rebound. On average the sets were within 7% for piles and 6.16% for SPT. This data indicates a promising relationship between the two methods ability to measure set. The relationship for rebound was less significant at 25.25% for piles and at 121.33% for SPT. The differences between CMS and PDM pile rebound may be from the non-standardized method used to determine pile rebound with the CMS system. The large differences between SPT data for rebound with the SPT testing may be due to a combination of things. The PDM software produced inaccurate DMX values during this testing which was attributed to either multiple hammer hits on the rods or time-dependent movements of the rods in the high rebound soils. These options need further evaluations using SPT testing in both rebound and non-rebound soils at several sites.

Average %	Average %	Average %	Average %
Difference	Difference	Difference	Difference
In Set From	In Rebound	In Set From	In Rebound
PDM For	From PDM	PDM For	From PDM
Piles	For Piles	SPT	For SPT

6.16

-121.33

Table 6-17 Summary of CMS - PDM Comparisons

6.5.2 Summary of PDM-SET-DFN Comparison

-7

Table 6-18 displays the summary of the PDA-PDM comparisons for both DFN and SET. The average differences in set were higher than the average differences in rebound for both SET and DFN data. The DFN-PDM set comparisons produced a large difference of over 255%, while

-25.25

the PDA-SET versus PDM-SET showed produced a moderately large discrepancy of at 55.08%. SET showed some relationship on average to PDM set at 18.49% and a smaller relationship on average to rebound at 33.26%. DFN proves an imprecise value for set within the PDA data. SET (Inspector set) is far more relatively precise.

Average %	Average %	Average %	Average %
Difference	Difference	Difference	Difference
In Set From	In Rebound	In Set From	In Rebound
PDM Using	From PDM	PDM Using	From PDM
DFN	Using DFN	SET	Using SET
255.71	18.49	55.08	33.26

Table 6-18 Summary of PDA-PDM Comparisons

6.6 CMS Testing

Using various digital video cameras mounted on tripods, video images were extracted and evaluated to yield pile and SPT rods movements. The equipment was placed about 20 to 50 feet from the piles or SPT rods to help minimize job hazards. Once the videos were recorded the equipment was transported to the Florida Tech Marine Environmental Optics Lab for data analysis and reduction. A detailed description of the CMS testing process is presented in Appendix D.

6.6.1 CMS Results

CMS data is presented for four pile driving sites, Baldwin Bypass, Dunns Creek, Reedy Creek and Ellis Overpass, while a comparison between CMS, PDM and PDA data is presented for Dunns Creek. SPT data is presented from Dunns Creek and Wekiva Parkway. Table 6-19 is an overview of the testing performed.

Testing Description	Site Name	Pile Location	Length of Pile (ft)	Successful PDA Testing	Successful PDM Testing	Successful CMS Testing
Pile	Baldwin Bypass	EB 4 Pile 1	82			1
	Reedy Creek	EB 1 Pile 1	120	1	\checkmark	1
	Dunns Creek	Pier 4 Pile 10	110	1	\checkmark	1
	Ellis Road	EB 1 Pile 8	140	1	1	✓
SPT	Wekiva Parkway	WLC 2 and WLC 3			1	1
	Dunns Creek	Near Peir 4 Pile 10			\checkmark	1

Table 6-19 PDA, PDM, CMS Testing Overview

CMS data was reduced to movements, and rebound as follows. A cumulative set was determined for each blow using an average movement following the rebound portion. These data are shown as a and b in Figure 6-22. The displacement (equivalent to the PDA maximum displacement or DMX), was calculated using the maximum distance (point 1) minus the previous average distance (a). The rebound per blow was calculated using the point 1 distance minus the subsequent average displacement (b). The cumulative displacements were determined for each blow as a, b, etc., therefore the set per blow is the difference between subsequent cumulative displacement values.

Figure 6-22 CMS Output of Displacement and Rebound for a Typical Hammer Blow

6.6.2 CMS Test Pile Results

6.6.2.1 Baldwin Bypass Test Pile Results

Figure 6-23 shows the pile displacement during 15 sequential hammer blows from FDOT's Baldwin Overpass near Jacksonville Florida. End Bent 4 production pile 1 (EB4 PP1) was evaluated by the research team. This video was 1 minute and 24 seconds long and was taken as the pile was being driven at the 30 to 35 feet level though the template. Extremely poor weather conditions along with several unanticipated logistic problems prevented any PDM data from being obtained. The dynamic pile capacities were determined by RADISE International however, their analysis only produced deflections for each blow, making it difficult to match depths during driving. Therefore, to match CMS data to the corresponding RADISE results time stamps from each device were used. The RADISE and CMS data were recorded at 2:45 PM. Table 6-20 is a summary from blow numbers 940 to 960, which were matched to the CMS data based on the recording times. It shows approximately 0.62 inches or 16 mm of maximum displacement occurs and 0.25 inches or 6 mm of rebound occurs during this portion of driving.

			Max Pile Top	PileTop	Pile Top
Blow	Date	Time	Displacement	Set	Rebound
			(inches)	(inches)	(inches)
940	5/14/18	2:45:06 PM	0.5944	0.3424	0.2520
941	5/14/18	2:45:08 PM	0.7364	0.5993	0.1371
942	5/14/18	2:45:09 PM	0.6368	0.3905	0.2463
943	5/14/18	2:45:11 PM	0.6004	0.3712	0.2292
944	5/14/18	2:45:12 PM	0.5917	0.3528	0.2389
945	5/14/18	2:45:13 PM	0.5740	0.2664	0.3075
946	5/14/18	2:45:15 PM	0.5895	0.3003	0.2892
947	5/14/18	2:45:16 PM	0.6041	0.3202	0.2839
948	5/14/18	2:45:18 PM	0.5380	0.2523	0.2857
949	5/14/18	2:45:19 PM	0.5961	0.3398	0.2563
950	5/14/18	2:45:21 PM	0.6306	0.4111	0.2194
951	5/14/18	2:45:22 PM	0.6376	0.4468	0.1908
952	5/14/18	2:45:23 PM	0.7232	0.5694	0.1538
953	5/14/18	2:45:25 PM	0.6215	0.4063	0.2152
954	5/14/18	2:45:26 PM	0.6416	0.4174	0.2242
955	5/14/18	2:45:28 PM	0.6356	0.4102	0.2254
956	5/14/18	2:45:29 PM	0.6324	0.4479	0.1844
957	5/14/18	2:45:30 PM	0.6141	0.3162	0.2979
958	5/14/18	2:45:32 PM	0.6702	0.4604	0.2098
959	5/14/18	2:45:33 PM	0.6438	0.3353	0.3085
960	5/14/18	2:45:35 PM	0.6077	0.3136	0.2942
		Average	0.6247	0.3843	0.2405
		Stand Dev	0.0453	0.0885	0.0492
		Std Error	0.0099	0.0193	0.0107

Table 6-20 End Bent 4 Production Pile 1 CMS movements

During the camera monitoring sequence, the interface being tracked was a black paint line. Data in terms of vertical displacement versus frame number indicate that over 600 frames at 60 Hz or approximately 10 seconds (i.e., 600 frames divided by 60 frames per second) a total displacement of 3 inches occurred or 150 mm (i.e., 168 – 22 mm). The signals show initial downward displacements followed by the upward rebound for each blow. About 0.79 inch (20 mm) of downward movement followed by about ¼-inch (6 mm) of rebound occurred for the first 13 blows. About ½ to ¼-inch (12 mm and 6 mm) of downward movement occurred followed by about 0.16 to 0.08 inch (4 and 2 mm) of rebound for the last two blows. Mean rebound displacement for the first 12 hammer blows was 0.3 inch with 0.037 inch (7.37 mm with 0.94

mm) standard error of the mean1. Mean maximum displacement for all 15 blows was 0.67 inch and 0.05 inch (17.11 mm and 1.25 mm) standard error of the mean.

Figure 6-23 CMS Vertical Displacement from 15 pile Hammer Blows at Baldwin Bypass, Jacksonville Florida

Figure 6-24 shows the first two hammer blows over about 100 frames (about 2 seconds) from the Baldwin Bypass CMS data. Both the pile set and rebound are shown. A pile set of 0.45-inch (11 mm) results for the first blow after a rebound of 0.28-inch (7 mm) occurs. The camera signal also shows several bouncing movements which damp out prior to the subsequent blow. These bouncing movements would produce larger bouncing rebounds. For example, during blow 2 the bouncing rebound would be ¹/₂-inch (12 mm) instead of ¹/₄ inch or 6 mm. In conclusion, the 60 Hz camera video produced a clear trace of the pile movement and accurate measurements of displacement when combined with black tape on the light gray concrete pile even though the

¹ Standard Error of the mean is equal to the standard deviation divided by the square root of the number of samples and is a precision estimate of either mean displacements or rebounds.

weather conditions were extremely poor, which however, prevented any data from being obtained with the PDM.

6.6.2.2 Reedy Creek Test Pile Results

CMS testing was performed throughout the pile driving process for the 120-foot-long test pile at Reedy Creek. Figure 6-25 is the video image and calibration information for the Reedy Creek test pile. It shows that the black electrical tape used to mark the pile was 23 pixels wide and measured to be 0.6 inch (15 mm). The calibration produced pixels that measured 0.025 inch (0.652 mm) in width.

Figure 6-26 is the CMS signal measured during 12 hammer blows recorded during the CMS test pile evaluation at the Reedy Creek sight. These signals were measured with a camera, recording at 60 Hz at the 90-foot location using black tape on the pile (Figure 6-25). During the 12 blows a total of about 8.8 inches (220 mm) of vertical movement occurred with minimal rebound. These values produce a maximum displacement of about 0.7 inch (18 mm) per blow. The set per blow for the first nine blows was about ³/₄ inch or 20 mm, while the set of the 10th through 12th blows decreased. The rebound standard error of the mean was approximately 0.02 inch (0.5 mm). In conclusion, the 60 Hz camera video produced a clear trace of the pile movement when combined with black tape on the light gray concrete pile.

PDA data from approximately this same depth also showed no rebound. Table 6-21 shows the PDA data from approximately the same location on the pile. The rebound averaged 0.14 inches based on either the inspectors or digital information. The maximum displacement per blow was 0.94 inches or 23 mm.

In summary, both the CMS and PDA data match at the 90-foot mark for the Reedy Creek site. End Bent 1; Pile 12 was tested.

Figure 6-25 CMS Video Calibration for Reedy Creek, Orlando, Florida

Figure 6-26 Reedy Creek CMS Signals for 12 Hammer Blows

Table 6-21 PDA	Reedy Creek Data	a Summary from 90 feet
----------------	------------------	------------------------

Blow	Date	Time	LP	DMX	DFN	SET	iRebound	dRebound
			feet	inches	inches	inches	inches	inches
1	7/19/18	14:53:38	90.07	0.91	0.8	0.8	0.11	0.11
2	7/19/18	14:53:39	90.13	0.92	0.8	0.8	0.12	0.12
3	7/19/18	14:53:40	90.2	0.94	0.8	0.8	0.14	0.14
4	7/19/18	14:53:41	90.27	0.92	0.8	0.8	0.12	0.12
5	7/19/18	14:53:42	90.33	0.92	0.8	0.8	0.12	0.12
6	7/19/18	14:53:44	90.4	0.94	0.79	0.8	0.14	0.15
7	7/19/18	14:53:45	90.47	0.96	0.8	0.8	0.16	0.16
8	7/19/18	14:53:46	90.53	0.94	0.8	0.8	0.14	0.14
9	7/19/18	14:53:47	90.6	0.95	0.8	0.8	0.15	0.15
10	7/19/18	14:53:49	90.67	0.95	0.8	0.8	0.15	0.15
11	7/19/18	14:53:50	90.73	0.95	0.8	0.8	0.15	0.15
12	7/19/18	14:53:51	90.8	0.96	0.8	0.8	0.16	0.16
			Mean	0.94	0.80	0.80	0.14	0.14
			Std Dev	0.02	0.00	0.00	0.02	0.02
			Std Error	0.00	0.00	0.00	0.00	0.00

6.6.2.3 Dunns Creek Test Pile Results

Four sets of videos between 61 and 75 feet were analyzed. There was a wooden reference beam surveyed within the template at an elevation of 44 feet. A typical video image, from the 75 to 77-foot pile marking zone is shown in Figure 6-27. It includes the reference beam, plus pile markings and black paint used for CMS analyses.

Figure 6-27 CMS Video Image from Dunns Creek Test Pile 10 at Pier 4 at 75- to 77-foot Pile Markings

Each video was cropped to about 10 to 20 hammer blows to calculate its statistical significance. A region of interest (ROI) was determined to obtain a region of pixels passing through a black painted line on pile. A different ROI was used for each video in order to track movements of the black painted line.

Figure 6-28 Nine CMS Hammer Blows from Dunns Creek from 60- to 62-feet

Figure 6-28 shows the camera video analysis for recordings nine hammer blows between the 60 to 62-foot pile length location. The average final cumulative displacements in inches for the first three blows are shown. Each blow also shows rebound on the order of 3/4 inch. Table 6-22 is a summary of the displacements, rebound and sets for the 9 blows from Dunns Creek's 60 to 62-foot video recording. The research team visually noted about 3/4 inch of rebound and the CMS data confirmed it.

Table 6-23 is the corresponding PDA data for 11 blows from the 60 to 62 foot range from Dunns Creek. Both the rebound based on the inspectors blows per foot (iRebound) and the digital movements (dRebound) are shown. The set based on the inspectors blow counts is calculated as 12 inches divided by the number of blows per foot. Therefore, the iRebound is maximum displacement (DMX) – Set. Although the PDA sets are similar to the CMS sets, the values for DMX and final displacement (DFN) are much lower than the sets and consequently the rebound (iRebound) become negative. Sets of 2.4 inches per blow correspond to approximately 5 blows per foot, which is a very low blow count. These negative PDA rebound

198
values are most likely the result of the pile moving after the PDA time stamp is completed. This continual movement could be expected at the low blow counts encountered. In summary, the CMS data matches the visual information, while the PDA data may have an error due to the pile's continual movement at the low blow counts.

Blows	Cumulative Displacement (inches)	Max Displacement (inches)	Rebound (inches)	Set (inches)
1	N/A	N/A	0.7288	N/A
2	3.6400	3.3100	0.7288	2.5800
3	6.2200	3.2000	0.7542	2.4500
4	8.6700	3.3200	0.7592	2.5600
5	11.2300	3.3500	0.7881	2.5600
6	13.7900	3.3300	0.8080	2.5200
7	16.3100	3.3100	0.7826	2.5300
8	18.8400	3.1300	0.7485	2.3800
9	21.2200	2.1500	N/A	N/A
Mean	12.4900	3.1375	0.7623	2.5114
Std Dev	5.7731	0.3798	0.0266	0.0664
Std Error	2.0411	0.1343	0.0094	0.0251

Table 6-22 CMS Dunns Creek Data Summary from 60- to 62-feet

Table 6-24 is a summary of CMS data from 20 hammer blows from Dunns Creek recorded at the 71-foot pile depth. It shows that the rebound increased from the 61-foot data, for the majority of the blows to about 1-inch, with minimal sets in 0.1-inch range. Note two outlier points occurred at blows 16 and 17. Note if the sets are summed, from blows 2 to 19, a total of 1.66-inches of pile movement occurs during these 20 blows.

Blows	Date	Time	LP	DMX	DFN	SET	iRebound	dRebound
			feet	inches	inches	inches	inches	inches
1	9/19/18	9:32:57	60	1.69	1.62	3	-1.31	0.07
2	9/19/18	9:32:59	60.2	1.67	1.58	2.4	-0.73	0.09
3	9/19/18	9:33:00	60.4	1.7	1.62	2.4	-0.7	0.08
4	9/19/18	9:33:01	60.6	1.82	1.74	2.4	-0.58	0.08
5	9/19/18	9:33:02	60.8	1.69	1.62	2.4	-0.71	0.07
6	9/19/18	9:33:04	61	1.54	1.4	2.4	-0.86	0.14
7	9/19/18	9:33:05	61.2	1.67	1.6	2.4	-0.73	0.07
8	9/19/18	9:33:06	61.4	1.74	1.66	2.4	-0.66	0.08
9	9/19/18	9:33:07	61.6	1.72	1.65	2.4	-0.68	0.07
10	9/19/18	9:33:08	61.8	1.47	1.34	2.4	-0.93	0.13
11	9/19/18	9:33:10	62	1.75	1.68	2.4	-0.65	0.07
			Mean	1.678	1.592	2.455	-0.776	0.086
			Std Dev	0.097	0.119	0.181	0.202	0.025
			Std Error	0.029	0.036	0.055	0.061	0.008

Table 6-23 PDA Dunns Creek Data Summary from 60- to 62-feet

Table 6-25 and Table 6-26 are a summaries of PDA data from hammer blows recorded at the 71 to 72-foot pile depth. Table 6-25 with 20 blows, is a summary similar to the 61-foot PDA summary. If the set from these 20 blows is summed, 2.09 inch of pile movement occurs. Table 6-26 is the mean, standard deviation and standard error of the mean averages if all 121 hammer blows are considered. The averages, standard deviations and standard errors are similar for both tables. Both PDA tables indicate that the rebound based on the inspectors blow counts (iRebound) increased to over 1.5 inches, while the digital rebound (dRebound) was 0.11 inches, which was much less than was visually observed. Digital rebound and sets were very similar; however, set is based solely on the inspectors blow counts. If the PDA sets are summed over the proper interval, a total of 12 inches of pile movement occurs during the corresponding 120 blows.

Blows	Cumulative Displacement (inches)	Max Displacement (inches)	Rebound (inches)	Set (inches)
1	N/A	N/A	1.04	N/A
2	1.57	1.03	0.93	0.1
3	1.67	1.1	1.1	0
4	1.67	1.11	1.02	0.1
5	1.77	1.17	1.09	0.08
6	1.85	1.22	1.1	0.12
7	1.97	1.09	0.98	0.1
8	2.07	1.18	1.09	0.1
9	2.17	1.03	0.94	0.09
10	2.26	1.13	1.04	0.1
11	2.36	1.15	1.05	0.1
12	2.46	1.14	1.03	0.11
13	2.57	1.17	1.11	0.06
14	2.63	1.15	1.04	0.11
15	2.74	1.17	1.07	0.1
16	2.84	0	0.11	0.11
17	2.95	0.1	0.2	0.1
18	3.05	1.19	1.09	0.09
19	3.14	1.14	1.06	0.09
20	3.23	1.22	N/A	N/A
Mean	2.3668	1.0258	0.9521	0.0922
Std Dev	0.5210	0.3389	0.2782	0.0257
Std Error	0.1195	0.0778	0.0638	0.0061

Table 6-24 CMS Dunns Creek Data Summary from 71-foot depth

Blows	Date	Time	LP	DMX	DFN	SET	iRebound	dRebound
			feet	inches	inches	inches	inches	inches
1	9/19/18	9:44:05	71	1.63	1.52	0.12	1.51	0.11
2	9/19/18	9:44:06	71.01	1.62	1.51	0.11	1.51	0.11
3	9/19/18	9:44:08	71.02	1.63	1.52	0.11	1.52	0.11
4	9/19/18	9:44:09	71.03	1.59	1.47	0.11	1.48	0.12
5	9/19/18	9:44:10	71.04	1.58	1.46	0.11	1.47	0.12
6	9/19/18	9:44:12	71.05	1.63	1.51	0.11	1.52	0.12
7	9/19/18	9:44:13	71.05	1.53	1.42	0.11	1.42	0.11
8	9/19/18	9:44:15	71.06	1.62	1.5	0.11	1.51	0.12
9	9/19/18	9:44:16	71.07	1.62	1.5	0.11	1.51	0.12
10	9/19/18	9:44:18	71.08	1.52	1.41	0.11	1.41	0.11
11	9/19/18	9:44:19	71.09	1.58	1.46	0.11	1.47	0.12
12	9/19/18	9:44:20	71.1	1.63	1.51	0.11	1.52	0.12
13	9/19/18	9:44:22	71.11	1.55	1.44	0.11	1.44	0.11
14	9/19/18	9:44:23	71.12	1.6	1.49	0.11	1.49	0.11
15	9/19/18	9:44:25	71.13	1.57	1.45	0.11	1.46	0.12
16	9/19/18	9:44:26	71.14	1.54	1.43	0.11	1.43	0.11
17	9/19/18	9:44:27	71.14	1.55	1.44	0.11	1.44	0.11
18	9/19/18	9:44:29	71.15	1.57	1.45	0.11	1.46	0.12
19	9/19/18	9:44:30	71.16	1.61	1.49	0.11	1.5	0.12
20	9/19/18	9:44:32	71.17	1.53	1.42	0.11	1.42	0.11
			Mean	1.5850	1.4700	0.1105	1.4745	0.1150
			Std Dev	0.0373	0.0356	0.0022	0.0368	0.0050
			Std Error	0.0084	0.0080	0.0005	0.0082	0.0011

Table 6-25 PDA Dunns Creek Summary from the Initial 20 Hammer Blows Between 71-And 72-Feet

Table 6-26 PDA Statistical Data Summary from all 121 Hammer Blows between 71- and 72-feet

Mean	1.5636	1.4428	0.1101	1.4535	0.1208
Std Dev	0.0426	0.0423	0.0009	0.0425	0.0063
Std Error	0.0040	0.0040	0.0001	0.0040	0.0006

Table 6-25 and Table 6-26 indicate that high rebound occurs. CMS data indicates approximately 1 inch or rebound occurs, but PDA data indicates about 1.5 inch of rebound occurs. Sets from both devices are similar at about 0.1 inches. Rebounds between ³/₄ and 1 inch were visually noted by the research team. The inspectors log only notes high rebound experienced between ¹/₄ and ¹/₂ inch and that it continued throughout driving until refusal.

One variable that is not included in this comparison is the actual distance between pile markings, which may not be precisely 12 inches. Sets of 0.11 inches corresponds to 9 blows per foot, which is relatively low. If the markings are off or the size of the paint dot or line varies lower or higher blows could result. However, with DMX values of 1.5 to 1.6 inches, the blow count would have had to be 2 per foot to match the CMS rebounds. This value is much too low and therefore, the paint marking error could not have been the sole reason for the discrepancies. A second possible reason is that the pile was moving longer than the PDA software data collection time (i.e. timestamp). If this occurs DFN would be too high and produce smaller dRebound (digital based rebounds). These discrepancies need further analyses using PDA and CMS data from FDOT test piles.

Table 6-28 and Table 6-28 are the CMS and PDA summaries for the 74-ft-depth. Table 6-29 is the statistical mean, standard deviation and standard errors when all 124 blows are considered. These data are similar to those presented at the 71-ft-depth. They also show larger PDA rebounds (1.5 inches) than CMS rebounds (1.0 inches).

Table 6-30 and Table 6-31 are the CMS and PDA summaries for the 75-ft-depth. Table 6-31 is the data from the first 20 blows at this depth and allow a direct comparison between CMS and PDA results. Table 6-32 the statistical mean, standard deviation and standard errors when all 169 blows are considered. These data are similar to those presented at the 71-ft depth. They also show larger PDA rebounds (1.5 inches) than CMS rebounds (1.0 inches).

Blows	Cumulative Displacement (inches)	Max Displacement (inches)	Rebound (inches)	Set (inches)	
1	N/A	N/A	1.12	N/A	
2	1.06	1.16	1.07	0.08	
3	1.14	1.02	0.86	0.16	
4	1.3	0.95	0.98	-0.03	
5	1.27	1.22	1.06	0.16	
6	1.43	1.15	1.05	0.1	
7	1.53	1.16	1.04	0.12	
8	1.65	1.24	1.1	0.14	
9	1.79	1.21	1.1	0.11	
10	1.9	1.13	1.04	0.09	
11	1.99	1.11	0.98	0.12	
12	2.11	1.15	1.02	0.13	
13	2.24	1.23	1.14	0.1	
14	2.34	1.26	1.13	0.13	
15	2.47	1.24	1.15	0.09	
16	2.56	1.26	1.1	0.16	
17	2.72	1.12	1.06	0.06	
18	2.78	1.2	1.06	0.14	
19	2.92	1.2	N/A	N/A	
Mean	1.9556	1.1672	1.0589	0.1094	
Std Dev	0.5786	0.0799	0.0680	0.0449	
Std Error	0.1364	0.0188	0.0160	0.0109	

Table 6-27 CMS Dunns Creek Data Summary from 74-foot depth

Blows	Date	Time	LP	DMX	DFN	SET	iRebound	dRebound
			feet	inches	inches	inches	inches	inches
1	9/19/18	10:20:02	74	1.51	1.37	0.06	1.45	0.14
2	9/19/18	10:20:03	74.01	1.54	1.42	0.1	1.44	0.12
3	9/19/18	10:20:04	74.02	1.51	1.38	0.1	1.41	0.13
4	9/19/18	10:20:06	74.02	1.52	1.4	0.1	1.42	0.12
5	9/19/18	10:20:07	74.03	1.58	1.46	0.1	1.48	0.12
6	9/19/18	10:20:09	74.04	1.56	1.46	0.1	1.46	0.1
7	9/19/18	10:20:10	74.05	1.56	1.44	0.1	1.46	0.12
8	9/19/18	10:20:12	74.06	1.56	1.43	0.1	1.46	0.13
9	9/19/18	10:20:13	74.07	1.59	1.45	0.1	1.49	0.14
10	9/19/18	10:20:15	74.07	1.56	1.43	0.1	1.46	0.13
11	9/19/18	10:20:16	74.08	1.52	1.41	0.1	1.42	0.11
12	9/19/18	10:20:18	74.09	1.53	1.41	0.1	1.43	0.12
13	9/19/18	10:20:19	74.1	1.54	1.41	0.1	1.44	0.13
14	9/19/18	10:20:21	74.11	1.56	1.45	0.1	1.46	0.11
15	9/19/18	10:20:22	74.11	1.56	1.42	0.1	1.46	0.14
16	9/19/18	10:20:24	74.12	1.55	1.42	0.1	1.45	0.13
17	9/19/18	10:20:25	74.13	1.51	1.36	0.1	1.41	0.15
18	9/19/18	10:20:27	74.14	1.56	1.42	0.1	1.46	0.14
19	9/19/18	10:20:28	74.15	1.53	1.42	0.1	1.43	0.11
20	9/19/18	10:20:30	74.15	1.54	1.41	0.1	1.44	0.13
			Mean	1.5445	1.4185	0.0980	1.4465	0.1260
			Std Dev	0.0227	0.0265	0.0087	0.0213	0.0124
			Std Error	0.0051	0.0059	0.0019	0.0048	0.0028

Table 6-28 PDA Dunns Creek Summary from the Initial 20 Hammer Blows between 74and 75-feet

Table 6-29 PDA Statistical Summary from all 124 Hammer Blows Between 74- and 75-

feet

Mean	1.5415	1.4147	0.0997	1.4419	0.1269
Std Dev	0.0258	0.0280	0.0036	0.0256	0.0125
Std Error	0.0023	0.0025	0.0003	0.0023	0.0011

Blows	Cumulative Displacement (inches)	Max Displacement (inches)	Rebound (inches)	Set (inches)
1	N/A	N/A	0.91	N/A
2	0.68	0.99	0.94	0.05
3	0.73	0.94	0.85	0.09
4	0.82	1	0.91	0.08
5	0.9	1	0.9	0.1
6	1	0.95	0.9	0.06
7	1.06	0.99	0.93	0.06
8	1.12	1.01	0.89	0.11
9	1.23	1	0.92	0.08
10	1.31	0.97	0.91	0.06
11	1.37	0.96	0.87	0.1
12	1.47	1.01	0.9	0.1
13	1.57	1.01	0.92	0.09
14	1.66	1.01	0.94	0.07
15	1.73	1.01	0.92	0.08
16	1.81	1.04	0.93	0.11
17	1.92	0.99	0.93	0.07
18	1.99	0.94	0.86	0.08
19	2.07	0.98	0.9	0.08
20	2.15	0.98	N/A	N/A
Mean	1.3578	0.9889	0.9068	0.0817
Std Dev	0.4320	0.0266	0.0247	0.0174
Std Error	0.1018	0.0063	0.0057	0.0041

Table 6-30 CMS Dunns Creek Data Summary from 75-foot depth

Blows	Date	Time	LP	DMX	DFN	SET	iRebound	dRebound
			feet	inches	inches	inches	inches	inches
1	9/19/18	10:23:03	75	1.53	1.39	0.1	1.43	0.14
2	9/19/18	10:23:05	75.01	1.54	1.41	0.07	1.47	0.13
3	9/19/18	10:23:06	75.01	1.54	1.41	0.07	1.47	0.13
4	9/19/18	10:23:08	75.02	1.53	1.41	0.07	1.46	0.12
5	9/19/18	10:23:09	75.02	1.55	1.42	0.07	1.48	0.13
6	9/19/18	10:23:11	75.03	1.55	1.42	0.07	1.48	0.13
7	9/19/18	10:23:12	75.04	1.56	1.45	0.07	1.49	0.11
8	9/19/18	10:23:14	75.04	1.53	1.43	0.07	1.46	0.1
9	9/19/18	10:23:15	75.05	1.55	1.42	0.07	1.48	0.13
10	9/19/18	10:23:17	75.05	1.52	1.42	0.07	1.45	0.1
11	9/19/18	10:23:18	75.06	1.59	1.46	0.07	1.52	0.13
12	9/19/18	10:23:20	75.07	1.54	1.41	0.07	1.47	0.13
13	9/19/18	10:23:21	75.07	1.55	1.42	0.07	1.48	0.13
14	9/19/18	10:23:23	75.08	1.61	1.48	0.07	1.54	0.13
15	9/19/18	10:23:24	75.08	1.62	1.49	0.07	1.55	0.13
16	9/19/18	10:23:26	75.09	1.56	1.44	0.07	1.49	0.12
17	9/19/18	10:23:27	75.1	1.56	1.45	0.07	1.49	0.11
18	9/19/18	10:23:29	75.1	1.52	1.39	0.07	1.45	0.13
19	9/19/18	10:23:30	75.11	1.55	1.42	0.07	1.48	0.13
20	9/19/18	10:23:32	75.11	1.55	1.44	0.07	1.48	0.11
			Mean	1.5525	1.4290	0.0715	1.4810	0.1235
			Std Dev	0.0261	0.0259	0.0065	0.0281	0.0111
			Std Error	0.0058	0.0058	0.0015	0.0063	0.0025

Table 6-31 PDA Dunns Creek Summary from the Initial 20 Hammer Blows between 75-and 76-feet

Table 6-32 PDA Statistical Summary from All 169 Hammer Blows Between 75- and 76-

feet

Mean	1.5267	1.4424	0.0702	1.4565	0.0843
Std Dev	0.0618	0.0683	0.0023	0.0619	0.0281
Std Error	0.0048	0.0053	0.0002	0.0048	0.0022

This set of PDA data also produces higher rebounds than the corresponding CMS data. As previously noted, the pile markings and the timestamp may be contributing factors. Sets of 0.07 inches corresponds to 14 blows per foot, which is still somewhat low.

In summary, all three sets of CMS-PDA comparisons at Dunns Creek were successful. DMX values were very similar, while CMS rebounds matched visual observations from the research team in all cases. PDA rebounds based on the inspector's sets were inconsistent, producing negative rebounds for very low blow counts (i.e. 5) and rebounds about ½-inch higher per blow than CMS rebounds and low blow counts (9-14). Additional testing must be competed to validate this work. Improvements in the pile marking process is also required to improve the results.

6.6.2.4 Ellis Road Test Pile Results

Figure 6-30 shows the video signal from 37 hammer blows recorded during the test pile installation at the Ellis Road site in Melbourne Florida. The pile tested was a production pile that was not instrumented to allow displacements to be determined. The camera video analysis is for recordings made at the 127-foot pile location. The pile was painted with orange paint and black tape was applied by the research team for CMS tracking. During the last 36 blows, 1.076 inches of pile penetration occurred or an average of 0.030-inches per blow. During the last few blows minimal set occurred. Driving stopped soon after this pile driving sequence. The cameras indicated higher ground vibrations than at the other sites. The prolonged vibrations can be seen as the continued up and down movements associated with each blow, which are not evident in the previous plots.

Figure 6-29 CMS results from Ellis Road, Melbourne Florida

6.6.2.5 SPT Rod Movement Evaluations

The research team investigated whether any trends from SPT rod movements may indicate that pile rebound would occur. Two high rebound sites (i.e. Dunns Creek and Wekiva Parkway) were investigated using FDOT's SMO drill rig and crew. SPT tests were conducted within the rebound soils at these sites using an automatic hammer.

6.6.2.6 Dunns Creek SPT Rod Movement Evaluation

SPT rod displacement time series data was obtained using a 60 Hz camera, from SPT testing between 65 and 67 feet at the Dunn Creek site. Figure 6-30 shows the vertical displacements from 20 SPT hammer blows each producing very large rebound during a total of 1.6 inches of rod penetration. This movement produces an average rod set per blow of 0.08 inches. Examination of the movements indicates that there is significant immediate rebound followed by a smaller time-dependent rebound occurring after each blow.

Figure 6-30 SPT Rod Movements from Dunns Creek

Figure 6-31 is an expanded view of six SPT hammer blows. During all six blows approximately 1 inch of rebound occurs followed by the upward time-dependent movements. A small circle was overlain on the first cycle, to highlight the time-dependent movement portion that followed the immediate rebound. During blow number three, 0.1 inches of time-dependent movement occurred after the immediate rebound of 0.85 inches. These SPT results clearly show the soil to have rebound characteristics. It was visually classified as a very fine silty sand with clay and shell fragments.

Figure 6-31 Expanded View of 6 Hammer Blows Showing SPT Time-Dependent Movements at Dunns Creek

6.6.3 CMS Rod Color and Tape Color Analysis

At both sites the SPT testing was performed in the soil near the concrete test pile driving locations in the spring of 2019. CMS testing was simultaneously conducted at both sites. These were the first attempts at using CMS for monitoring SPT rods. The SPT rods are typically quite dark compared to a concrete pile and some experimentation was necessary to help determine how to best monitor the rod driving process. As will be shown, the color of the rods is somewhat dependent upon the color of the drilling muds used.

Based upon the success of using back tape or a black paint line on the light gray concrete piles it was wrapped around the SPT rods at 6-inch intervals. As show in Figure 6-32, the black CMS tape and white PDM reflective tape were placed on the SPT rod at the Dunns Creek site.

Figure 6-32 Dunns Creek SPT Rods with White PDM Reflective Tape and Black CMS Tape

The rod driving process was monitored and it was determined that the contrast between the black tape and the dark SPT rod did not provide optimal contrast to be used in the future. The reflective tape was also used to track the rod movement; however, the PDM reflective tape was extremely difficult to use in the CMS system because the rod movements causes reflectivity changes due to scattering characteristics of the tape. In essence the tapes color changes when viewed by the camera due to the complexity of the reflective tape signal. The result was that the edge signal at the rod/tape interface was blurred because of the scattering characteristics of the reflective tape as shown in Figure 6-33. The detection of the edge of the tape is poor due to multiple scattering effects of the PDM tape, making the video imaging of this tape a poor choice when using the CMS. It was also determined that if black tape was used in the future, that it would be best to have just one black tape in a rod section and to have the black reflective tape and white tape overlapped as shown in a mockup in Figure 6-34.

Figure 6-33 Poor CMS Video Frame Zoomed Image of Reflective Tape

Figure 6-34 Proposed Reflective Tape and Black Tape Marking Layout for CMS and PDM Systems on SPT Rods

The method for marking the SPT rod as shown in Figure 6-34 may still be limited due to the low contrast between the black tape and the rod. However, the CMS system would allow monitoring of all blows during the 24-inch displacement sequence, whereas the PDM would only record the hits during the period the reflective tape passes between the two laser points (the PDM

active area). Without the above approach, each black line can only be monitored using the CMS using a 6-inch region above the rod casing.

The monitoring of the SPT rod was also conducted at the Wekiva test site during the spring of 2019. In this CMS test, SPT rod video rebound measurements were made using the white PDM reflective tape and white chalk lines. Figure 6-35 shows the rod tape and white chalk markings for the PDM and CMS systems. From this testing it was found that the white reflective tape edge detection was still poor due to the multiple scattering behavior of the reflective tape similar to that shown in . However, the white chalk line or white electrical tape could provide excellent edge detection or contrast. The CMS system would produce excellent results, in future testing, if of only one chalk line or one standard white tape were placed into the region of interest as shown in Figure 6-36.

Figure 6-35 CMS and PDM Markings Used for Rod Displacement Monitoring at the Wekiva test site

Figure 6-36 Proposed SPT Rod Chalk Line and PDM Tape Placement (Left) or White Electrical Tape and PDM Reflective Tape Layout (Right)

Results from this testing suggests that the optimal marking of the SPT rod for CMS monitoring would be the use of one white chalk line or white electrical tape being placed alone or next to the PDM reflective tape as shown in Figure 6-36. The white tape layout as shown below (right) or the white tape and a simple chalk mark would allow optimal SPT rebound testing in future analyses.

At the Wekiva SPT test site the image processing of the video sequences were confounded by the presence of "flying debris" as shown by the white streaked lines in the video frame capture (see Figure 6-37). In essence, when the SPT blow occurred, dried drilling mud particles were broken loose and crossed the rod from one frame to another. These effective "white streaks" crossed the region of interest during the processing of the video frames and caused errors in the displacement calculations during a 24-inch rod driving sequence. These dried mud particles are observed in the snapshot shown in Figure 6-37. In order to deal with this problem will require further testing of the SPT displacement monitoring using the video camera system. One solution may be to use darker colored drilling muds.

Figure 6-37 Video Frame with White Streaks from Drilling Mud, from Wekiva CMS Tests

6.6.4 CMS Summary

An image processing approach, that incorporates full frame video frame rate recording images, was used to track the vertical displacements of both test piles and SPT rods during the installation process. The technique essentially tracks vertical movement of paint or tape interfaces placed on the piles or rods. Movements are automatically detected and traced using recording frequencies between 30 and 120 Hz and producing vertical movements to within a fraction of a mm. The image processing technique utilizes a unique automated feature detection

solution technique, and requires no contact with the pile or structure being monitored. This technique allows the use of a static sensor (i.e., camera mounting) platform such as a tripod. The technique originally developed for detecting high resolution motion of small water surface gravity and capillary waves, has now been shown as useful for determining pile driving movements on various FDOT projects. The techniques and results have potential to be routinely used by construction safety inspectors and related personnel in need of pile driving displacement monitoring.

7 Conclusions and Recommendations

7.1 Conclusions

7.1.1 PDM Conclusions

At present, the PDM is producing erratic data when being used during continuous pile driving monitoring. The PDM is best suited to be used for short durations, such as pile capacity set checks, which allow the operator sufficient time to properly input the required information and check equipment operation before any testing can commence. If improved to adapt to continuous testing the PDM could serve as a useful tool for monitoring throughout the driving process. It is producing data for all SPT applications; however, the hammer impact and displacements are possibly affected by hammer bounce or time-dependent soil response.

PDM testing produced useful set and rebound results during continuous pile driving monitoring. However, due to the complex data required for input between PDM testing intervals and the continual tape movements during production driving, much of the testing resulted in unusable data. Of the 38 attempts at data acquisition, only 21 were successful at processing the blows recorded. When the data was useable, the results produced precise values for set and rebound that matched PDA and CMS results.

PDM testing produced useful results for SPT rod movements during driving for set and rebound. The data produced for rebound was unreliable as it more often than not showed negative values for rebound, which is not possible by definition. This error is likely due to the unique driving of the rods. The rods appear to have a distinct point where the displacement slows but then speeds back up. The PDM software was unsuccessful at processing this phenomenon.

Hammer blow to blow comparisons were complex since the PDM system does not provide information on the pile position during the laser PDM recording or analysis.

The PDM is designed to record measurements from a static start, making it difficult to use for continuous pile driving monitoring. For this reason, it produced more consistent movements from SPT test than piles. This limitation does not occur with CMS equipment.

220

PDM sets were within 8% of the CMS sets for both pile-driving and SPT testing. PDM rebounds were within 26% of the CMS rebounds for pile driving only. No comparisons were obtained between SPT PDM and CMS data because PDM rebounds were often negative.

When compared to the PDA the PDM was shown to produce values for set and rebound that were within 68% for pile driving. This data is only considering using the set and rebound calculated using inspector set. The values for DFN were inconsistent.

The lab tape tests indicated that the *Outdoor* tape produced the best results. The *Original* Inopiles tape produced the second-best results. The *3M* tape produced charts that improperly tracked blows. All three tapes worked similarly during field testing.

7.1.2 CMS Conclusions

The existing CMS equipment produced highly accurate displacement data at a 60 Hz sampling rate for all tests. It functioned during extreme conditions, including severe rain, and high temperatures (i.e. $> 90^{\circ}$ F) yielding displacements with accuracies to at least 0.004-inch (0.1 mm). The main limitations with this system are (1) it is not commercially available, (2) the data had to be processed in the lab after testing, (3) cameras can overheat on hot days and (4) video storage can be a concern if long videos are obtained during continuous driving. As with the PDM, CMS cameras must be set up such that the test pile markings are visible, however, it is not critical to set the lens directly in line (i.e. perpendicular to) with the pile. The cameras are reliable, and reasonably priced, especially considering that 60 Hz signals were used. Adding a rugged laptop with upgraded software will result in a reliable cost-effective system that will give personnel confidence in the data.

The high-speed camera methods worked best with either a black line sprayed on the concrete pile or a black tape. The tape occasionally fell off the pile during driving. CMS data was reduced to accurate pile or SPT rod movements in all situations.

When the hammer blows from CMS and PDM systems were compared, the displacements were similar. CMS videos always yielded pile movements.

The camera system provides a complete log of the pile driving record in both a visual as well as a time series signal. The PDM system relies upon a reflective tape being applied to the

pile frequently falls off of the pile. The same problem can also occur when the camera system uses black tape applied to a pile.

Using white tape on the SPT rods produced erroneous CMS readings due to the scattering effects of the tape, which produces poor discrimination of the tape edge.

7.1.3 Cyclic Triaxial and Damping Coefficient Conclusions

For cyclic triaxial analysis, the viscous damping factors were successfully calculated from 40 CT tests from sites located in central and north Florida. The Python[™] tool Jupyter Notebook Version 5.4.0 was crucial for the analysis of the 600,000 rows of data per test.

Due to a difference in units, the damping factors originally obtained from the stress-time analysis were not comparable to CASE's published data. When normalized, the resultant damping factors were two to five orders of magnitude higher than CASE's range.

The second approach, based on the viscous energy theory, produced damping coefficients were very similar to the CASE expected values and it is also dimensionless. Therefore, because of the similar range of results and units, the viscous energy approach is shown to be a better option of analysis, when compared to the stress-time relation.

CAPWAP[®] analyses produced reasonable shaft and toe damping coefficients. The toe coefficient, however, was more consistent than the shaft damping coefficient.

7.2 Recommendations

7.2.1 PDM Recommendations

The PDM needs to be further evaluated by FDOT SMO personnel using a group of pile driving projects throughout Florida. The following is a list of concerns.

- For effective monitoring, the placement and amount the reflective tape must be clarified, so that, (1) the proper width of the strips can be used, and (2) proper spacing of the strips relative to the PDM location are chosen.
- The required accuracy of the measured distance from the PDM to the pile must be evaluated to see if it affects the test data.

- PDM use in poor weather conditions needs evaluated since only one poor weather site was evaluated. Heavy rainfall may prevent the infrared or active zone marking from being properly seen and detected by the system.
- The cause for poor data during good weather conditions also needs to be documented. Ellis Road had PDM testing from 50 to 122 feet with only 1-foot of useable data being produced.
- Extreme care must be taken to ensure that only 1 set of tape strips is within the PDM active zone.
- Monitoring blow numbers using PDM results is not clearly understood and causes concerns when comparing data to other measurement devices.
- The required input information must be checked to determine if information, such as stroke height, is critical to ensure the device works properly.

There are a number of improvements that would make the PDM more suitable for measuring pile movements during continuous pile driving monitoring. The biggest limitation is that the PDM does not produce results during continual driving. A recommended solution would be for the software to include an additional testing mode designed specifically for continuous monitoring. This upgrade should require the user to enter the elevations of the PDM active zones, the length of the pile, the as well as the locations of every reflective tape placed on the pile. Those inputs would allow the software to be programmed so that it can track exactly where the pile is in relation to the ground as each successive piece of tape enters the active zone. As a new piece of tape enters the active zone the software would automatically perform a signal test and begin data acquisition. As the tape leaves the active zone the software would stop acquisition and wait for the subsequent tape thus completely removes the need for the user to have to enter in the info for the upcoming test.

Using the PDM with SPT testing needs further study since negative rebound was interpreted with the PDM software in the soils tested. All the soils tested had produced pile rebound and the raw digital versus time signals may show a response that could be related to rebound or a second hammer bounce. Other issues resulted from the PDM not being a device tailored for American use. The PDM software requires the devices date and time to be changed from *mm/dd/yyyy* to *dd/mm/yyyy* in order to review any of the data. The software could be modified to accommodate the US standard. A less impactful issue is that the PDM and the tablet sent with it have charging cables set up for European and Australian outlets respectively. This difference required the use of adapters to use them in American outlets. Charging cables could be changed to accommodate American outlets.

Another limitation is in the hardware used in to run the PDM software. The tablet lacked the power to review data quickly and can take minutes to open just one test for review. During testing the tablet and the laptop lacked the power to seamlessly refresh the chart that showed live displacement over time or the blow count. Both devices were subject to getting hot while on site even when under shade. Both devices had screens that were to dim to be used comfortably in the field, even on max brightness. Both devices had trouble maintain battery life thought the course of a day in the field and often would need to be charged before the day was over. The best solution would be to use a ruggedized laptop to run the PDM software that has a more powerful CPU, a brighter screen, and a better resistance to heat, and a larger battery life.

7.2.2 CMS Recommendations

It is recommended that the CMS software collection process be upgraded and simplified. The upgrade should include a rugged field laptop with a high visibility screen, connected directly to the camera. This upgrade will allow instant storage of the videos. To simplify the processing, short duration videos should be recorded during critical pile driving portions. This step allows smaller files to be used and thereby will significantly speed up the image light intensity processing. The videos should be limited to about 30 seconds, so that the attached computer can quickly process the data to produce near real-time pile displacement information.

It is recommended that a black line sprayed on concrete piles or a black ¹/₂ or ³/₄ inch wide tape be used during CMS analysis of pile driving displacement, rebound and set.

It is recommended that a white electrical tape or white chalk be placed on the SPT rods during CMS analysis of driving displacement, rebound and set.

224

It is recommended that hammer blow numbers plus camera lens elevations be reported to enable comparisons between CMS and PDA results.

7.2.3 Signal Comparison Recommendations

To properly compare CMS and PDA data, hammer blow numbers must be matched to both devices. PDA data is recorded at the sensor locations and matched to template elevations, while CMS data is currently recorded at the tripod elevation, with visual confirmations of pile location based on pile foot markings. If hammer blow numbers are used for both devices data can be more readily compared.

A second recommendation is to require that the pile markings be standardized and if possible marked at the factory. A proposed mark-shape is shown below. The triangular point would help the inspector determine where to focus while recording the number of blows.

Figure 7-1 Proposed Standardized Pile Marking

To properly match PDM and PDA data it is recommended that set-checks be used. These 10 blow driving sequences allow time for the complex input needed for PDM testing to be completed prior to driving.

7.2.4 Cyclic Triaxial and Damping Coefficient Recommendations

Additional CAPWAP[®] data should be evaluated to see if more reliable trends can be developed. A minimum of 30 new blows should be added to the current 12 analyzed.

PDA parameters such as UN, SFT and SFT/EB0 did not relate to rebound and therefore should be avoided when attempting to understand how rebound relates to pile capacities.

8 References

Authier, J., and Fellenius, B. H. (1980). "Quake Values Determined from Dynamic Measurements." In *1st International Conference on the Application of Stress-Wave Theory on Piles*, Stockholm, Sweden, pp. 197-216.

Bostater, C., and Yang, B., (2014). "Shallow Water Surface Gravity Wave Imaging, Spectra and Their Use in Shallow Water Dredging Operations," SPIE Vol. 9240, pp. 92401-9.

Bostater, C., Yang, B., and Rotkiske, (2017). Video Measurements and Analysis of Surface Gravity Waves in Shallow Water, In: Surface Waves Surface Waves - New Trends and Developments, F. Ebrahimi (ed.), InTech, ISBN 978-953-51-5733-5, 18 pp. (In Press).

Bostater, C., (2018). "Moving Muck and Fluidized Mud and Tributary Bedload Measurements at Dredge Sites", Indian River Lagoon Research Institute, Florida Institute of Technology, Melbourne Florida, October 18, 31 pp.

Bum-Jae, Y., Oh, S., Han, S., and Lee S. (2002). "Visual Measurement of Pile Penetration and Rebound Movement using a High-speed Line-scan Camera." In IEEE International Conference on Robotics and Automation: ICRA'02, Washington, DC, 11-12 May 2002, 4307-4312.

Cosentino, P., Kalajian, E., Misilo, T., Chin Fong, Y., Davis, K., Jarushi F., Bleakley A., Hussein M. H., and Bates, Z. (2010). Design Phase Identification of High Pile Rebound Soils. Rep. No. FL/DOT/BDK-81 977-01, Florida Department of Transportation

Cosentino, P. J., Kalajian, E. H., Eldeen, Y. S., Bleakley, A.M., Wisnom, B., Omar, A., Hadeel Dekhn, Misilo, T. J., and Shaban, A. M. (2016), "Improving Design Phase Evaluations for High Pile Rebound Soils – BDV-28 977-01". Florida Department of Transportation (FDOT).

Florida Department of Transportation (FDOT) (2016). "Standard Specifications for Road and Bridge Construction", Section 455 - Structures Foundations.

Hannigan, P. J., Goble G. G., Likins G. E., and Rausche, F. (1998). "Design and Construction of Driven Pile Foundations". Pile Driving Contractors Association, Vol. II, page 18-17, US Department of Transportation, Federal Highway Administration, National Highway Institute, Washington DC.

Hattori, A., and Nishiwaki S. (1974). "Measurements of the Dynamic Behavior of Concrete Piles During Driving Operations Using a He-Cd Laser." Optics and Laser Technology, Vol 6 Issue 6 p. 273- 275.

Huang, B., Xia, T. Qiu, H. Zhou, X. and Chen, W. (2017). "Shear Wave Velocity in Sand Considering the Effects of Frequency Based on Particle Contact Theory.", 0165-2125 Elsevier, March.

Hussein, M. H., and Goble, G. G. (2012). "A Brief History of the Application of The Stress-Wave Theory to Piles". 10th International Conference on Stress Wave Theory and Testing of Deep Foundations, ASCE Geo-Institute.

Hussein, M. H., Woerner, W. A., Sharp, M., and Hwang, C. (2006). "Pile Driveability and Bearing Capacity in High-Rebound Soils." Geotechnical Engineering in the Information Technology Age, GeoCongress, 63. P. 1-4

Ishihara, K. (1996). "Soil Behavior in Earthquake Geotechniques". Oxford: Geotechnical Clarendon Press.

Islam M. N., Zareie S., Shahria-Alam M., and Seethhaler, R., (2016) "A Novel Method for Interstory Drift Measurement Using Laser-Displacement Sensors, Journal of Structural Engineering 142 (6) 06016001.

Jamiolkowski, M., Presti, D., and Manassero, M. (2003). "Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT." In Soil Behavior and Soft Ground Construction: Proceeding of the Symposium, Geo-Institute, Cambridge, Massachusetts, October 5-6, 2001, 119, 201-238.

Lambe, T. W., and Whitman, R. V. (1969). "Soil Mechanics". Massachusetts Institute of Technology, Wiley Pub. pp. 227ff.

Look, B., P. Seidel, J and Sivakumar, S., and Welikala, D. L. C., (2015). "Real Time Monitoring of SPT Using a PDM Device – The Failings of Our Standard Test Revealed" International Conf. on Geotechnical Engineering-Colombo.

Look, B., Seidel, P. Sivakumar, J., S., and Welikala, D. L. C., (2015a). "Standard Penetration Test Measurement Variations Exposed Using a Digital PDM Device" International Conf. on Geotechnical Engineering-Colombo.

Look, B. G., and Seidel, J. P. (2015b). "Macro Standard Penetration Test Measurements Examined with a Microscale PDM Device" 12th Australian New Zealand Conference in Geomechanics and Human Influence, Wellington, New Zealand.

McVay, M. C., and Kuo, C. L., (1999). "Estimate Damping and Quake by Using Traditional Soil Testing". FDOT Final Report, Contract BB-508.

Murrell, K. L. Canivan, G. J., and Camp, W. M. (2008). "High and Low Strain Testing of Bouncing Piles." In The 33rd Annual and 11th International Conference on Deep Foundations, 18(20).

NCHRP Synthesis 253 (1997) "Dynamic Effects of Pile Installations on Adjacent Structures", A Synthesis of Highway Practice, Transportation Research Board, National Research Council. Washington, DC.

Oliveira, J. R., Nunes, P. R., and Silva, M. R. (2013). "Field Apparatus for Measurement of Elastic Rebound and Final Set for Driven Pile Capacity Estimation." Geotechnical Testing Journal, ASTM, 34(2) pp. 1-5.

Oliveira, J. R. M. S., Nunes, P. R. R. L., Silva, M. R. L., Cabral, D. A., Ferreira, A. C. G., Carneiro, L. A. V., and Giraldi, M. T. M. R. (2011). "Field Apparatus for Measurement of Elastic Rebound and Final Set for Driven Pile Capacity Estimation." Geotech Test J 34(2).

Park, H. S., Son, S., Choi, S. W., and Kim, Y. (2013). "Wireless Laser Range Finder System for Vertical Displacement Monitoring of Mega-Trusses During Construction". Sensors,13(5), 5796-5813. Pile Dynamics, Inc. (2006). CAPWAP[®] – CAse Pile Wave Analysis Program – Background Report.

PSI. (2016) "Geotechnical Report for Structures", Floridian Place Extension, Orange County Florida DRMP Job No 15-0260.001 PSI Job No. 07571393.

Smith, E.A.L. (1960). "Pile Driving Analysis by The Wave Equation." American Society of Civil Engineers, ASCE, Journal of Soil Mechanics and Foundation Engineering, SM4, 86 (1960): p. 35-61.

Tedesco, J. W., and MacDougal, W. G., (1999). "Structural Dynamics: Theory and Applications". Addison Wellesley.

Tian, H., Chen, Y., Li, X., Li, W. and Li, F. (2014). "The Development of a Proper Laser Displacement Monitoring System for Medium and Short Span Bridges – ProQuest".

U.S Department of Transportation, (2017). "Geotechnical Site Characterization". NHI Course No. 132031, Geotechnical Engineering Circular No.5, Publication No. FHWA NHI-16-072, April.

Varma, S. J., Gopalakrishnan, N., Kumar, K. S. and Sakaria, E. (2013). "Structural Integrity Evaluation of Pile Foundations by Pile Integrity Testing". International Journal of Structural and Civil Engineering Research, Vol.2, No. 3, p. 133-140.

Vyaloy, S. S. (1986). "Rheological Fundamentals of Soil Mechanics". Gersenov Research Institute for Bases and Underground Structures, 6, Vtoraya Institutskaya Ul'itsa, 109389 Moscow.

APPENDIX A. PDM DATA	237
A.1. PDM Lab Testing Data	
A.1.1 Lab Testing - Ruler Driven into Loose Sand in 5-Gallon Bucket	
A.1.2 3M and Outdoor Reflective Tape Testing	
A.2 PDM Site Data	
A.2.1 Port Canaveral North Cargo Berth 8	
A.2.2 Reedy Creek, 7/19/2018, Floridian Place Extension: Ten Tests	
A.2.3 Ellis Road I-95 Overpass, 11/30/2018: Eight Tests	
A.2.4 Dunns Creek Two Tests	
A.2.5 Wekiva Parkway Wildlife Crossings 2 and 3	
A.2.5.1 Day 1, 5/7/2019, WLC 2	
APPENDIX B. CMS DATA	526
B.1 Dunns Creek	
B.1.1 Pile10, Pier 4	
B.1.2 SPT near Station 136+38	
APPENDIX C. PDA DATA	
C.1 Reedy Creek – 7/19/2018 – Floridian Place Extension	
C.2. Ellis Road I-95 Overpass – 11/30/2018	532
C.3. Dunns Creek Pile 10, Pier 4, near Station 436+37	539
APPENDIX D. CMS TESTING PROCEDURES	544
D.1 Choosing a Camera	544
D.2 Camera in Field Location	
D.3 Marking the Pile or SPT Rods	546
D.4. Synchronizing CMS, PDM, and PDA Data	549
D.5. Smart Image Processing	549
D.6. Essential Video Imagery Processing Steps	
D.7. Laboratory Pixel Size Calibration	
D.8. Pile Driving Movement Evaluation Procedure	554
D.9. Video Processing	555
APPENDIX E. SOIL PROFILES AND PDA PLOTS	558
E.1 SPT Plots	
E.1.1 I-4 & SR-417	

E.1.2 Heritage Parkway	
E.1.3 I-10 & Chaffee	
E.1.4 Ramsey Branch	
E.2 PDA Rebound Plots	
E.2.1 I-4 & SR-417	
E.2.2 Heritage Parkway	
E.2.3 I-10 & Chaffee	
E.2.4 I-4 & SR-192	
E.2.5 Ramsey Branch	
APPENDIX F. CT DAMPING ANALYSIS	
F.1 CU Triaxial Data and Results	
F.2 Python [™] CT Results output	
F.3 Cyclic Triaxial Strain versus Time Plots from Python [™]	
F.3.1 I-4 & SR-417	606
F.3.2 Heritage Parkway	
F.3.3 I-10 & Chaffee	611
F.3.4 I-4 – SR-192	614
F.3.5 Ramsey Branch	619
F.3.6 I-4 and Osceola Parkway	
APPENDIX G. CAPWAP OUTPUT TABLES RESULTS	
G.1 Chaffee Rd	
G.2 Heritage Parkway	
G.3 I-4 & SR-192	
G.4 SR-417 & International	
G.5 Ramsey Branch	
APPENDIX H. LESSONS LEARNED FROM PDM FIELD USAGE	
H.1 PDM Initial Equipment Evaluation and Setup	
H.2 Reflective Tape Evaluations	
H.3 PDM Field Testing Equipment	
H.4 PDM Data Collection for Piles	
H.4.1 PDM Pile Setup	636
H.4.2 Pile Preparation and Data Collection	

Appendix List of Figures

Figure D-1 Typical Camera for Field Testing	544
Figure D-2 Typical Camera Setups	546
Figure D-3 Typical Pile plus PDM Markings	547
Figure D-4 Typical CMS and PDM SPT Rod Markings	548
Figure D-5 Five Steps for Processing Video Imagery	551
Figure D-6 Dunns Creek Concrete Test Pile Photo at 75-Foot Location from 9/19/20	18
Video Frame Recorded At 60-Hz	552
Figure D-7 Laboratory wooden simulated pile with PDM and CMS markings	553
Figure D-8 Video Image of the Wooden Laboratory Test Pile and Markings Plus Pho	oto of
Eye or Loupe Scope	554
Figure D-9 Video Images Showing Pile Markings and Analysis of ROI to Produce P	ile
Driving Movements	555
Figure D-10 Typical Image Processing of Vertical Deflection versus Frame Number	556
Figure D-11 Typical Reduced CMS Measurement Data	557
Figure E-1 – I-4 & SR-417 Soil profile for Soil Boring B-1	559
Figure E-2 – I-4 & SR-417 N _{SPT} values for Soil Boring B-1	560
Figure E-3 – I-4 & SR-417 Soil for Soil Boring B-2	561
Figure E-4 – I-4 & SR-417 N _{SPT} values for Soil Boring B-2	562
Figure E-5 – I-4 & SR-417 Soil profile PD&E Soil Boring B-1	563
Figure E-6 – I-4 & SR-417 N _{SPT} values for PD&E Soil Boring B-1	564
Figure E-7 I-4 & SR-417 Soil profile for PD&E Soil Boring B-2	565
Figure E-8 I-4 & SR-417 N _{SPT} values for PD&E Soil Boring B-2	566
Figure E-9 – Heritage Soil profile for Soil Boring TH-5	567
Figure E-10 – Heritage N _{SPT} values for Soil Boring TH-5	568
Figure E-11 - Heritage Soil profile for Soil Boring TH-6	569
Figure E-12 – Heritage N _{SPT} values for Soil Boring TH-6	570
Figure E-13 – I-10 & Chaffee Soil Profile for Soil Boring B-2	571
Figure E-14 – I-10 & Chaffee N _{SPT} Values for Soil Boring B-2	572
Figure E-15 – I-4 & SR-192 Soil Profile for Soil Boring B-27	573

Figure E-16 – I-4 & SR-192 N _{SPT} Values for Soil Boring B-27	574
Figure E-17 – I-4 & SR-192 Soil Profile for Soil Boring B-39	
Figure E-18 – I-4 & SR-192 N _{SPT} values for Soil Boring B-39	576
Figure E-19 – I-4 & SR-192 Soil Profile for Soil Boring B-40	577
Figure E-20 – I-4 & SR-192 N _{SPT} Values for Soil Boring B-40	578
Figure E-21 – I-4 & SR-192 Soil Profile for Soil Boring B-41	579
Figure E-22 – I-4 & SR-192 N _{SPT} Values for Soil Boring B-41	
Figure E-23 – Ramsey Branch Soil Profile for Soil Boring B-1	
Figure E-24 – Ramsey Branch N _{SPT} Values for Soil Boring B-1	
Figure E-25 - Ramsey Branch Soil Profile for Soil Boring B-3	
Figure E-26 – Ramsey Branch N _{SPT} Values for Soil Boring B-3	
Figure E-27 – I-4 & SR-417 EB1P14	
Figure E-28 – I-4 & SR-417 EB2P5	
Figure E-29 – Heritage EB1P1	
Figure E-30 – Heritage EB5P1	
Figure E-31 – Heritage IB2P10	
Figure E-32 – Heritage IB3P1	
Figure E-33 – Heritage IB4P10	
Figure E-34 – I-10 & Chaffee PR2PL9	590
Figure E-35 – I-4 & SR-192 BD EB1P3	591
Figure E-36 – I-4 & SR-192 P6P16	591
Figure E-37 – I-4 & SR-192 P7P10	
Figure E-38 – I-4 & SR-192 P8P4	
Figure E-39 – Ramsey Branch EB1P1	
Figure E-40 – Ramsey Branch EB1P2	
Figure E-41 – Ramsey Branch E1P3	594
Figure E-42 – Ramsey Branch EB4P5	594
Figure E-43 – Ramsey Branch EB5P2	
Figure F-1 – I-4 & SR-417: Sample Depth 20-22 ft	606
Figure F-2 I-4 & SR-417: Sample Depth 23-25 ft	606
Figure F-3 I-4 & SR-417: Sample Depth 29-31 ft	607
222	

Figure F-4 I-4 & SR-417: Sample Depth 55-57 ft	
Figure F-5 I-4 & SR-417: Sample Depth 58-61 ft	
Figure F-6 - Heritage: Sample Depth 54-56 ft	
Figure F-7 - Heritage: Sample Depth 55-57 ft	
Figure F-8 Heritage: Sample Depth 57-59 ft	
Figure F-9 Heritage: Sample Depth 60-62 ft	
Figure F-10 Heritage: Sample Depth 62-64 ft	
Figure F-11 Heritage: Sample Depth 62-64 (Test 2) ft	610
Figure F-12 Heritage: Sample Depth 65-67 ft	610
Figure F-13 I10 & Chaffee: Sample Depth 47-49 ft	611
Figure F-14 I10 & Chaffee: Sample Depth 50-52 ft	611
Figure F-15 I10 & Chaffee: Sample Depth 52-55 ft	
Figure F-16 I10 & Chaffee: Sample Depth 54-56 ft	612
Figure F-17 I10 & Chaffee: Sample Depth 60-62 ft	612
Figure F-18 I10 & Chaffee: Sample Depth 60-63 ft	613
Figure F-19 I4 & 192: Sample Depth 45-47 ft	614
Figure F-20 I4 & 192: Sample Depth 46-47 ft	614
Figure F-21 I-4 & SR-192: Sample Depth 50-52 ft	615
Figure F-22 I-4 & SR-192: Sample Depth 55-57 ft	615
Figure F-23 I-4 & SR-192: Sample Depth 60-62 ft	615
Figure F-24 I-4 & SR-192: Sample Depth 60-62 ft (Test 3)	616
Figure F-25 I-4 & SR-192: Sample Depth 70-72 ft	616
Figure F-26 I-4 & SR-192: Sample Depth 70-72 ft (Test 2)	616
Figure F-27 I-4 & SR-192: Sample Depth 75-77 ft	617
Figure F-28 I-4 & SR-192: Sample Depth 75-77 ft (Test 2)	617
Figure F-29 I-4 & SR-192: Sample Depth 80-82 ft	617
Figure F-30 I-4 & SR-192: Sample Depth 85-87 ft	618
Figure F-31 I-4 & SR-192: Sample Depth 85-87 ft (Test 2)	
Figure F-32 Ramsey Branch: Sample Depth 31-33.5 ft	
Figure F-33 Ramsey Branch: Sample Depth 41-43.5ft	
Figure F-34 Ramsey Branch: Sample Depth 48.5-51 ft	
(1) A	
Figure F-35 Ramsey Branch: Sample Depth 63.5-66 ft	
--	--
Figure F-36 Osceola: Sample Depth 60-61 ft	
Figure F-37 Osceola: Sample Depth 75-76 ft	
Figure F-38 Osceola: Sample Depth 75-76 ft (Test 2)	
Figure F-39 Osceola: Sample Depth 80-81 ft	
Figure F-40 Osceola: Sample Depth 80-81 ft (Test 2)	
Figure F-41 Osceola: Sample Depth 80-82 ft	
Figure F-42 Osceola: Sample Depth 80-82 ft (Test 2)	
Figure G-1 - PR2PL9 – BN 354	
Figure G-2 – EB1P1 – BN 279	
Figure G-3 – EB5P1 – BN 450	
Figure G-4 - IB3P1 – BN 280	
Figure G-5 – IB4P10 – BN 158	
Figure G-6 - P8P4 – BN 2260	
Figure G-7 – EB1P14 – BN 322	
Figure G-8 - EB2P5 - BN 1479	
Figure G-9 - EB1P1 – BN 654	
Figure G-10 – EB1P3 – BN 600	
Figure G-11 - EB4P5 – BN 1322	
Figure G-12 - EB5P2 - BN 480	
Figure H-1 Schematic of Inopiles Operation within Active Zone	
Figure H-2 Inopiles PDM in Case, leveling bag and Surface Pro [®]	

Appendix List of Tables

Table D-1 Advantages and Disadvantages of Cameras for Detecting Movements	545
Table F-1– Sample Dimensions and Mass	597
Table F-2 – CU Triaxial Results	598
Table F-3 - CT Results output Python [™]	599

Appendix A. PDM Data

A.1. PDM Lab Testing Data

A.1.1 Lab Testing - Ruler Driven into Loose Sand in 5-Gallon Bucket

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	20:07:10	10.04	39.3	0.47	1.455	39.77
2	20:07:11	10.06	16.1	0.57	1.32	16.68
3	20:07:12	10.07	15.77	1	1.655	16.77
4	20:07:13	10.08	12.43	1	1.413	13.43
5	20:07:14	10.1	19.19	0.52	2.254	19.7
6	20:07:15	10.11	4.52	2.67	2.04	7.19
7	20:07:16	10.11	1.12	1.75	1.198	2.87

PDM REPOR	г		
Project Name Project Description	Test	Test Date Pile Number	9/8/2017 2-EOD
NUMERICAL	DATA		Capacity Method: (None)
Set (inch)	0.45	VMX (ft/s)	5.403
Rebound (inch)	0.05	DMX (inch)	0.50
Concerning and the second			

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
7	0.04	0.07	3.93	33.164
6	0.18	0.11	6.69	33.160
5	0.76	0.02	7.40	33.146
4	0.49	0.04	4.63	33.083
3	0.62	0.04	5.43	33.042
2	0.63	0.02	4.33	32.990

Average	rage 0.45 inch	0.05 inch
Max Variatio	Variation 0.71 inch	0.08 inch

PDM REPORT

A.1.2 3M and Outdoor Reflective Tape Testing

A.1.2.1 3M Tape Results: Three Tests

Trial 1 of 3

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	12:52:45	15.25	14.98	0.62	2.987	15.6
2	12:52:46	15.27	12.99	1.57	2.698	14.56
3	12:52:48	15.28	10.46	0.66	2.878	11.11
4	12:52:50	15.29	13.53	1.29	3.493	14.82
5	12:52:55	15.31	16.25	0.94	3.191	17.18
6	12:52:55	15.31	0.06	1.62	2.553	1.68
7	12:52:56	15.31	-0.13	1.49	4.01	1.36
8	12:52:59	15.31	-0.02	1.69	3.384	1.67
9	12:53:00	15.31	0.09	1.18	2.698	1.27
10	12:53:01	15.31	-0.11	1.24	2.613	1.13
11	12:53:02	15.31	0.19	2.01	3.24	2.21

PDM REPOR	Т		
Project Name Project Description	Labcyloidtap	Test Date Pile Number	10/2/2019 1-EOD
NUMERICAL	DATA		Capacity Method: (None)
NUMERICAL Set (inch)	0.54	VMX (ft/s)	Capacity Method: (None) 10.004
NUMERICAL Set (inch) Rebound (inch)	0.54 0.04	VMX (fVs) DMX (inch)	Capacity Method: (None) 10.004 0.58

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
5	0.64	0.04	10.47	50.224
4	0.53	0.05	11.46	50.170
3	0.41	0.03	9.44	50.126
2	0.51	0.06	8.85	50.092
1	0.59	0.02	9.80	50.049

Average	0.54 inch	0.04 inch
Max Variation	0.23 inch	0.04 inch

PDM REPORT

Project Name Labcyfoldtap Project Description Test Date Pile Number 10/2/2019 1-EOD

COMPLETE VIEW

Trial 2 of 3

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	12:57:41	15.25	8.84	0.59	2.734	9.43
2	12:57:43	15.26	8.82	0.94	2.649	9.76
3	12:57:44	15.27	15.18	0.84	3.432	16.03
4	12:57:46	15.29	17.79	0.52	3.408	18.3
5	12:57:49	15.31	15.72	0.36	3.252	16.08
6	12:57:54	15.32	15.32	1.01	3.396	16.33
7	12:57:55	15.32	0.6	1.47	3.107	2.07
8	12:57:55	15.3	-17.71	19.08	2.806	1.37
9	12:57:55	15.32	17.74	-8.5	23.436	9.24
10	12:57:56	15.32	-0.08	2.15	3.673	2.07
11	12:57:56	15.32	-0.04	2.07	3.252	2.03
12	12:57:58	15.32	0.15	1.76	4.287	1.91
13	12:58:00	15.32	-0.32	1.79	4.793	1.48

Page 1 of 3

	ODT.			I DOI
Project Name Project Descrip	Labcyloidtap		Test Date Pile Number	10/2/2019 2-EOD
UMERIC	AL DATA			Capacity Method: (None
Set (inch) Rebound (inch Canacity (kin)	0.54		VMX (tt/s) DMX (inch)	10.319 0.56
ABLE VI	EW			
ABLE VI	EW Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
Blow 6	Set (inch)	Rebound (inch)	VMX (ft/s) 11.14	Penetration (ft) 50.268
ABLE VII Blow 6 5	EW Set (inch) 0.60 0.62	Rebound (inch) 0.04 0.01	VMX (fVs) 11.14 10.67	Penetration (ft) 50.268 50.218
Blow 6 5 4	EW Set (inch) 0.60 0.62 0.70	Rebound (inch) 0.04 0.01 0.02	VMX (ft/s) 11.14 10.67 11.18	Penetration (ft) 50.268 50.218 50.166
ABLE VII Blow 6 5 4 3	EW Set (inch) 0.60 0.62 0.70 0.60	Rebound (inch) 0.04 0.01 0.02 0.03	VMX (fVs) 11.14 10.67 11.18 11.26	Penetration (ft) 50.268 50.218 50.166 50.108
Blow 6 5 4 3 2	EW Set (inch) 0.60 0.62 0.70 0.60 0.35	Rebound (inch) 0.04 0.01 0.02 0.03 0.04	VMX (ft/s) 11.14 10.67 11.18 11.26 8.69	Penetration (ft) 50.268 50.218 50.166 50.108 50.058

Average	0.54 inch	0.03 inch
Max Variation	0.35 inch	0.03 inch

PDM REPORT

Project Name Labcyfoldtap Project Description Test Date Pile Number 10/2/2019 2-EOD

COMPLETE VIEW

Trial 3 of 3

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	13:00:50	15.24	1.21	1.8	2.505	3.01
2	13:00:51	15.25	7.73	4.62	2.445	12.35
3	13:00:53	15.26	8.66	6.65	2.71	15.31
4	13:00:55	15.27	15.17	4.43	2.999	19.6
5	13:00:57	15.29	17.77	-1.54	2.541	16.23
6	13:00:59	15.31	15.42	-5.28	3.035	10.13
7	13:01:01	15.31	4.55	1.6	2.926	6.15

PDM REPORT Company Name Report Date 16/2/2019 Client Name Report Time 3:31:32 AM Project Name Labcyloidtap Test Date 10/2/2019 Test Time Project Description 1:00:42 PM Supervisor Superintendent Pile Number PDM Pile Offset (ft) 3-EOD 29.500 Pile Type Final Penetration at Blow 7 (ft) 50.231 Hammer Stroke (ft) £ | inch 0.24 50.24 內 50.23 50.22 0.18 0.40 50.21 60.2 50.19 50.18 0.64 60.17 0.61 50.16 齱 50.15 50.14 0.77 50.13 50.12 50.11 0.70 60.1 0.60 50.09 50.08 50.07 50.06 0.60 0.49 50.05 ul 1 50.04 0.34 50.03 0.12 50.02 50.01 0.30 0.05 50 Blow #1 Blow #2 Blow #3 Blow #4 Blow #6 Blow #6 Blow #7 49.99 Blows Page 1 of 3

PDM REPOR	т		
Project Name Project Description	Labcyloldtap	Test Date Pile Number	10/2/2019 3-EOD
NUMERICAL	DATA		Capacity Method: (None)
Set (inch) Rebound (inch) Capacity (kip)	0.40 0.07	VMX (this) DMX (inch)	8.980 0.47

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
7	0.18	0.06	9.60	50.231
6	0.61	-0.21	9.96	50.216
5	0.70	-0.06	8.34	50.166
4	0.60	0.17	9.84	50.108
3	0.34	0.26	8.89	50.058
2	0.30	0.18	8.02	50.029
1	0.05	0.07	8.22	50.004

Average	0.40 inch	0.07 inch
Max Variatio	ion 0.65 inch	0.47 inch

PDM REPORT

Project Name Labcyfoldtap Project Description Test Date Pile Number 10/2/2019 3-EOD

COMPLETE VIEW

A.1.2.2 Outdoor Tape Results: Three Tests

Trial 1 of 3

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	12:42:17	15.25	12.02	0.56	1.638	12.58
2	12:42:17	15.26	7.25	0.22	1.879	7.47
3	12:42:18	15.27	7.41	0.74	1.65	8.15
4	12:42:20	15.28	8.72	0.35	1.794	9.07
5	12:42:22	15.28	9.32	0.6	2.3	9.92
6	12:42:24	15.29	7.11	0.83	1.999	7.94

PDM REPORT Company Name Report Date 16/2/2019 Report Time Client Name 3:40:10 AM Project Name Test Date 10/2/2019 Labcylnewtap Project Description Test Time 12:41:53 PM Supervisor Superintendent Pile Number PDM Pile Offset (ft) 29.500 1-EOD Pile Type Final Penetration at Blow 6 (ft) 50.170 Stroke (ft) Hammer ft | inch 0.31 50.18 50.175 Barren Barrendel 50.17 50.165 0.39 50.16 50.155 60.15 0.28 Author Lucker 50.145 50.14 60.135 50.13 0.36 50.125 50.12 Addates and a second 0.37 50.115 60.11 60.105 0.32 60.1 60.095 50.09 Talks debut 0.34 60.085 50.08 0.29 50.075 60.07 50.065 0.29 اليابة 50.08 50.055 50.05 50.045 0.29 60.04 50.035 50.03 Blow #2 Blow #3 Blow #4 Blow #5 Blow #6 Blows Page 1 of 3

PDM REPORT Project Name Test Date 10/2/2019 Labcylnewtap Project Description Pile Number 1-EOD NUMERICAL DATA Capacity Method: (None) Set (inch) 0.31 VMX (ft/s) 6.314 DMX (inch) Rebound (inch) 0.02 0.34 Capacity (kip) -TABLE VIEW Blow Set (inch) Rebound (inch) VMX (ft/s) Penetration (ft) 6 0.28 0.03 6.56 50.170

5	0.37	0.02	7.55	50.147
4	0.34	0.01	5.89	50.116
3	0.29	0.03	5.41	50.088
2	0.29	0.01	6.16	50.063

Average	0.31 inch	0.02 inch	
Max Variation	n 0.09 inch	0.02 inch	

PDM REPORT

Project Name	Labcvinewtap	Test Date	10/2/2019
Project Description	22209.1121124	Pile Number	1-EOD

COMPLETE VIEW

Trial 2 of 3

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	13:03:45	15.26	20.14	0.58	2.132	20.71
2	13:03:46	15.27	14.8	0.45	2.24	15.25
3	13:03:48	15.29	11.72	0.6	1.975	12.33
4	13:03:49	15.3	11.42	0.5	2.529	11.92
5	13:03:51	15.31	9.71	0.21	2.3	9.91
6	13:03:53	15.32	7.63	0.39	1.999	8.02

PDM REPORT Company Name Report Date 16/2/2019 Client Name Report Time 3:41:21 AM Project Name Test Date 10/2/2019 Labcylnewtap Test Time Project Description 1:03:36 PM Superintendent Supervisor PDM Pile Offset (ft) Pile Number 2-EOD 29.500 Final Penetration at Blow 6 (ft) Pile Type 50.247 Hammer Stroke (ft) ft | inch 60.261 0.32 60.25 50.24 0.39 50.23 0.30 50.22 50.21 0.47 60.2 0.38 60.19 50.18 60.17 0.49 50.16 0.45 50.15 50.14 60.13 0.60 60.12 0.46 50.11 60.1 50.09 0.82 50.08 50.07 0.58 60.06 50.05 50.04 60.03 50.02 60.01 0.79 60 Blow #1 Blow #2 Blow#3 Blow #4 Blow #5 Blow #6 49.99 Blows

Page 1 of 3

PDM REPORT	Г		
Project Name Project Description	Labcylnewtap	Test Date Pile Number	10/2/2019 2-EOD
NUMERICAL I	DATA		Capacity Method: (None)
Set (inch) Rebound (inch) Capacity (kip)	0.49 0.02	VMX (ft/s) DMX (inch)	7.204 0.51

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
6	0.30	0.02	6.56	50.247
5	0.38	0.01	7.55	50.222
4	0.45	0.02	8.30	50.191
3	0.46	0.02	6.48	50.153
2	0.58	0.02	7.35	50.115
1	0.79	0.02	6.99	50.066

Average	0.49 inch	0.02 inch	
Max Variation	n 0.49 inch	0.02 inch	

PDM REPORT

Project Name	Labcylnewtap	Test Date	10/2/2019
Project Description		Pile Number	2-EOD

COMPLETE VIEW

Trial 3 of 3

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	13:07:09	15.25	10.87	0.18	2.373	11.05
2	13:07:11	15.26	10.52	-0.15	2.071	10.37
3	13:07:12	15.28	21.09	-9.21	2.589	11.88
4	13:07:14	15.28	0.02	1.68	2.541	1.7
5	13:07:15	15.29	10.38	-8.52	2.854	1.86
6	13:07:16	15.29	-0.37	2.43	5.203	2.06
7	13:07:16	15.29	0.12	2.74	4.661	2.86
8	13:07:17	15.3	11.79	6.05	10.14	17.85
9	13:07:17	15.3	0.07	4.63	8.334	4.69
10	13:07:18	15.3	0.33	3.79	9.141	4.12
11	13:07:18	15.3	-0.35	6.1	15.801	5.76
12	13:07:19	15.3	0.04	6.13	10.55	6.17
13	13:07:20	15.31	0.63	4.96	9.695	5.59
14	13:07:24	15.3	-1.91	6.67	8.984	4.76

Page 1 of 3

Project Description	t Name Labcylnewtap Test Date t Description Pile Number		3-EOD
NUMERICAL D	ATA		Capacity Method: (None
Set (inch)	0.42	VMX (tt/s)	8.155
Rebound (inch)	-0.13	DMX (inch)	0.29
Capacity (kip)			

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
5	0.41	-0.34	9.36	50.173
4	0.00	0.07	8.34	50.139
3	0.83	-0.36	8.50	50.139
2	0.41	-0.01	6.80	50.070
1	0.43	0.01	7.78	50.036

Average	0.42 inch	-0.13 inch
Max Variation	0.83 inch	0.43 inch

PDM REPORT

Project Name LabcyInewtap Project Description Test Date Pile Number 10/2/2019 3-EOD

COMPLETE VIEW

A.2 PDM Site Data

A.2.1 Port Canaveral North Cargo Berth 8

A.2.1.1 Day 1, 6/3/2018: Three Tests

Test 1 of 3

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	05:41:58	11.31	31.33	8.09	1.498	39.42
2	05:41:59	11.32	8.55	8.4	1.559	16.95
3	05:42:01	11.33	8.94	8.05	1.406	17
4	05:42:02	11.34	8.77	8.44	1.406	17.21
5	05:42:04	11.34	9.02	7.94	1.589	16.96
6	05:42:05	11.35	10.48	6.88	1.498	17.36
7	05:42:06	11.36	7.2	8.43	1.436	15.63
8	05:42:08	11.37	9.35	8.18	1.62	17.53
9	05:42:09	11.38	9.33	7.82	1.793	17.16
10	05:42:11	11.4	17.64	-1.23	1.345	16.41
11	05:42:13	11.41	9.49	7.44	1.589	16.94
12	05:42:15	11.42	8.98	7.5	1.752	16.47
13	05:42:16	11.43	8.94	7.16	1.589	16.1
14	05:42:18	11.43	8.68	7.5	1.345	16.18
15	05:42:23	11.44	10.23	7.55	1.671	17.79
16	05:42:24	11.46	20.33	-2.64	1.711	17.69
17	05:42:24	11.48	10.16	7.62	1.63	17.78
18	05:42:25	11.49	10.12	6.7	1.375	16.82
19	05:42:26	11.5	10.61	8.07	1.436	18.68
20	05:42:27	11.51	11.5	7.44	1.589	18.94
21	05:42:29	11.53	21.84	-3.96	1.589	17.88
22	05:42:32	11.54	10.83	5.97	1.498	16.8
23	05:42:33	11.55	12.95	6.41	5.073	19.36
24	05:42:34	11.56	11.23	6.61	1.508	17.84
25	05:42:36	11.58	12.02	7.3	1.508	19.32
26	05:42:37	11.59	12.14	5.91	1.508	18.05
27	05:42:44	11.6	11.26	6.71	1.426	17.97
28	05:42:44	11.61	12.95	6.46	1.63	19.41
29	05:42:44	11.68	66.55	-48.52	1.548	18.03
30	05:42:50	11.68	0.62	1.46	10.513	2.08
31	05:42:52	11.69	6.46	3.65	8.398	10.1
32	05:42:52	11.69	-0.3	3.32	6.076	3.02
33	05:42:53	11.66	-21.65	26.52	6.968	4.87
34	05:42:53	11.66	-0.6	7.42	17.763	6.83
35	05:42:54	11.63	-34.43	41.61	15.073	7.19
36	05:42:55	11.51	-120	12.23	28.068	-107.77
37	05:42:55	11.51	0.82	12.84	17.775	13.66
38	05:42:56	11.5	-7.39	21.5	20.061	14.11

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
39	05:42:56	11.5	-0.7	15.9	29.804	15.2
40	05:42:57	11.5	-0.27	10.37	23.52	10.1
41	05:42:57	11.5	0.54	9.63	26.784	10.16
42	05:43:03	11.5	0.02	10.67	19.865	10.69
43	05:43:03	11.5	-1.57	7.42	20.733	5.85
44	05:43:03	11.5	0.54	17.37	23.753	17.91
45	05:43:04	11.5	-0.5	13.37	24.193	12.87
46	05:43:04	11.5	0.59	9.28	18.667	9.87
47	05:43:04	11.5	0.4	12.92	26.173	13.32
48	05:43:05	11.5	0.07	10.06	18.508	10.13
49	05:43:05	11.5	-0.35	9.84	18.508	9.49
50	05:43:05	11.5	0.47	10.26	18.252	10.73
51	05:43:06	11.5	-0.07	8.93	18.716	8.86
52	05:43:06	11.5	-0.02	9.61	24.682	9.59
53	05:43:06	11.5	1.04	13.59	17.848	14.63
54	05:43:06	11.5	-1.4	9.73	20.269	8.33
55	05:43:07	11.5	-0.34	12.1	17.787	11.76
56	05:43:07	11.5	-0.05	9.61	24.608	9.56
57	05:43:07	11.5	0.77	13.55	24.926	14.32
58	05:43:08	11.5	0.03	7.54	15.807	7.57
59	05:43:08	11.5	-1.65	11.76	17.811	10.1
60	05:43:08	11.5	0.59	13.08	20.953	13.67
61	05:43:09	11.5	1.24	8.94	21.039	10.18
62	05:43:09	11.5	-0.9	15.41	23.325	14.51
63	05:43:09	11.5	0.59	12.85	21.809	13.44
64	05:43:10	11.5	-0.65	7.12	20.599	6.47
65	05:43:10	11.5	-0.02	10.38	22.714	10.37
66	05:43:11	11.5	-1.43	12.03	22.445	10.61
67	05:43:11	11.5	1.43	8.87	22.616	10.3
68	05:43:12	11.5	1.44	9.95	22.689	11.39
69	05:43:13	11.5	-0.95	13	24.572	12.04
70	05:43:13	11.5	-0.79	11.47	21.027	10.68
71	05:43:14	11.5	1.05	9.22	18.899	10.27
72	05:43:14	11.5	0.41	8.9	27.506	9.31
73	05:43:15	11.5	0	10.58	28.887	10.58
74	05:43:16	11.5	-3.59	10.69	20.489	7.1
75	05:43:16	11.5	2.93	10.47	21.271	13.39
76	05:43:17	11.5	-0.08	9.84	26.54	9.76

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
77	05:43:17	11.5	0.03	12.46	23.716	12.48
78	05:43:23	11.5	-0.37	10.02	22.286	9.64
79	05:43:23	11.5	2.73	8.53	18.007	11.26
80	05:43:24	11.5	-3.4	15.82	22.127	12.42
81	05:43:24	11.5	0.53	10.27	23.728	10.8
82	05:43:24	11.5	1	12.28	26.736	13.28
83	05:43:25	11.5	-0.07	10.25	18.154	10.18
84	05:43:25	11.5	-0.67	12.04	19.694	11.37
85	05:43:25	11.5	0.25	9.72	23.716	9.97
86	05:43:26	11.5	-0.15	8.96	18.985	8.82
87	05:43:26	11.5	0.83	9.16	28.765	9.99
88	05:43:26	11.5	-0.65	16.74	21.43	16.09
89	05:43:27	11.5	-1.06	12.51	29.437	11.45
90	05:43:27	11.5	0.95	9.61	23.924	10.57
91	05:43:27	11.5	0.38	14.55	26.112	14.94
92	05:43:28	11.5	-0.04	11.11	24.119	11.06
93	05:43:28	11.5	-0.28	12.4	20.269	12.12
94	05:43:28	11.5	-0.72	14.17	23.924	13.45
95	05:43:28	11.5	0.33	14.33	19.67	14.67
96	05:43:29	11.5	0.97	13.23	23.606	14.2
97	05:43:29	11.5	-1.24	10.13	27.542	8.89
98	05:43:29	11.5	2.57	9.89	22.677	12.45
99	05:43:30	11.5	-3.35	11.5	18.887	8.15
100	05:43:30	11.5	1.64	11.21	24.193	12.85
101	05:43:31	11.5	0.24	10.88	16.259	11.12
102	05:43:31	11.5	0.31	6.44	22.286	6.75
103	05:43:32	11.5	-0.62	10.05	27.322	9.44
104	05:43:33	11.5	0.63	10.92	18.985	11.56
105	05:43:33	11.5	0.81	12.45	20.489	13.26
106	05:43:34	11.5	-1.15	7.9	23.471	6.75
107	05:43:34	11.5	0.86	10.09	21.381	10.95
108	05:43:35	11.5	-1.21	14.75	22.75	13.54
109	05:43:35	11.5	0.15	11.33	19.144	11.48
110	05:43:36	11.5	0.11	11.34	21.784	11.45
111	05:43:36	11.5	-0.37	9.76	21.833	9.39
112	05:43:37	11.5	-1.11	12.31	18.154	11.2
113	05:43:37	11.5	1.54	9.12	21.564	10.66
114	05:43:43	11.5	-0.17	9.08	23.912	8.91

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
115	05:43:43	11.5	-0.96	9.26	21.772	8.3
116	05:43:44	11.55	47.8	-39.09	25.623	8.7
117	05:43:44	11.54	-7.61	-50.31	33.581	-57.92
118	05:43:44	11.49	-48.5	44.66	21.528	-3.84
119	05:43:45	11.26	-233.3	243.2	25.55	9.9
120	05:43:45	11.26	0.08	18.08	31.381	18.16
121	05:43:45	11.26	-2.23	17.67	31.198	15.44
122	05:43:45	11.23	-31.07	39.7	29.266	8.64
123	05:43:46	11.23	0.14	4.98	10.098	5.12
124	05:43:46	11.21	-14.39	18.3	9.156	3.91
125	05:43:46	11.27	60.2	-57.56	4.755	2.64
126	05:43:55	11.29	13.3	3.49	7.017	16.79
127	05:43:56	11.3	13.49	3.11	1.528	16.6
128	05:44:03	11.31	12.84	3.27	1.284	16.11
129	05:44:03	11.32	13.42	3.25	1.559	16.67
130	05:44:03	11.34	14.17	3.41	1.375	17.57
131	05:44:04	11.35	13.7	3.42	1.467	17.13
132	05:44:04	11.38	26.44	-9.4	2.598	17.04
133	05:44:06	11.39	12.54	2.7	1.559	15.24
134	05:44:08	11.4	13	3.24	1.406	16.23
135	05:44:09	11.42	13.84	2.8	1.589	16.65
136	05:44:11	11.43	13.31	3	1.63	16.31
137	05:44:12	11.44	13.04	3.45	1.589	16.5
138	05:44:13	11.46	13.87	3.54	1.63	17.42
139	05:44:15	11.48	26.12	-9.43	1.436	16.7
140	05:44:18	11.5	12.97	3.24	1.508	16.21
141	05:44:23	11.51	13.35	2.73	1.589	16.09
142	05:44:23	11.52	12.13	3.36	1.375	15.49
143	05:44:24	11.54	12.91	2.72	1.436	15.63
144	05:44:24	11.55	10.8	2.89	1.131	13.69
145	05:44:25	11.56	15.85	2.76	5.599	18.61
146	05:44:26	11.58	12.94	3.16	1.834	16.1
147	05:44:28	11.59	12.66	2.97	1.426	15.63
148	05:44:29	11.61	24.24	-9.07	1.345	15.17
149	05:44:32	11.62	11.96	2.85	1.793	14.81
150	05:44:33	11.68	51.32	-36.26	1.508	15.06
151	05:44:43	11.68	8.18	-6.25	7.854	1.93
152	05:44:44	11.68	0.07	1.96	4.181	2.04

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
153	05:44:44	11.68	-2.72	3.91	9.499	1.19
154	05:44:44	11.68	0.12	4.81	11.76	4.93
155	05:44:45	11.64	-40.31	46.52	8.57	6.2
156	05:44:45	11.64	2.5	16.71	28.312	19.21
157	05:44:46	11.64	-1.12	11.28	29.217	10.16
158	05:44:46	11.51	- 136.81	146.9	27.42	10.09
159	05:44:47	11.51	-0.71	8.92	20.22	8.21
160	05:44:47	11.5	-2.92	13.98	20.049	11.06
161	05:44:48	11.5	-0.45	11.19	25.097	10.74
162	05:44:49	11.5	0.67	10.35	19.425	11.02
163	05:44:49	11.5	-0.57	9.55	24.132	8.98
164	05:44:50	11.5	0.43	9.63	18.985	10.06
165	05:44:50	11.5	-0.97	12.96	19.694	11.99
166	05:44:51	11.5	-0.23	11.68	18.716	11.45
167	05:44:51	11.5	-0.54	10.33	24.89	9.79
168	05:44:52	11.5	0.59	10.29	22.775	10.89
169	05:44:52	11.5	0.44	9.16	25.159	9.6
170	05:44:53	11.5	-0.73	8.09	26.234	7.36
171	05:44:54	11.5	1.07	11.08	23.288	12.15
172	05:44:54	11.5	-0.74	13.08	19.266	12.34
173	05:44:55	11.5	-0.07	11.28	17.86	11.21
174	05:44:55	11.5	0.85	7.87	18.899	8.73
175	05:44:56	11.5	-0.13	12.42	18.716	12.29
176	05:44:56	11.5	-0.11	9.48	20.745	9.37
177	05:44:57	11.5	0.59	6.75	23.41	7.34
178	05:44:57	11.5	-1.21	14.18	22.127	12.97
179	05:45:03	11.5	0.25	16.54	24.278	16.79
180	05:45:03	11.5	-0.83	10.74	28.679	9.91
181	05:45:03	11.5	1.39	11.16	19.914	12.55
182	05:45:04	11.5	0.02	10.43	27.75	10.45
183	05:45:04	11.5	-0.9	16.57	22.408	15.67
184	05:45:04	11.5	0.57	13.06	22.445	13.62
185	05:45:05	11.5	-0.84	11.6	21.271	10.77
186	05:45:05	11.5	0.69	8.55	24.89	9.24
187	05:45:05	11.5	-1.48	13.49	19.266	12.01
188	05:45:06	11.5	0.05	9.22	23.264	9.27
189	05:45:06	11.5	0.75	12.64	19.841	13.39
		Penetration	Set	Rebound	Velocity	DMX
------	-----------	-------------	-------	---------	----------	-------
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
190	05:45:06	11.5	-0.62	14.46	17.457	13.84
191	05:45:07	11.5	0.18	13.43	17.811	13.61
192	05:45:07	11.5	1.56	10.93	19.914	12.5
193	05:45:07	11.5	-0.62	8.99	23.924	8.37
194	05:45:08	11.5	-0.14	9.8	19.694	9.66
195	05:45:08	11.5	0.69	12.77	26.54	13.47
196	05:45:08	11.5	-0.9	11.81	20.428	10.91
197	05:45:09	11.5	1	10.7	21.784	11.7
198	05:45:09	11.5	-0.96	10.95	19.621	10
199	05:45:09	11.5	-0.66	11.91	21.43	11.25
200	05:45:10	11.5	0.89	13.73	19.425	14.62
201	05:45:10	11.5	-0.76	12.53	25.489	11.77
202	05:45:11	11.5	0.23	10.75	23.276	10.98
203	05:45:11	11.5	0.9	9.08	20.843	9.98
204	05:45:12	11.5	-1.12	13.28	20.073	12.16
205	05:45:12	11.5	-0.06	11.27	23.19	11.21
206	05:45:13	11.5	-0.24	14.82	21.43	14.58
207	05:45:14	11.5	1.09	11.37	23.288	12.46
208	05:45:14	11.5	1.26	12.63	22.445	13.89
209	05:45:15	11.5	-2.31	8.41	24.474	6.1
210	05:45:15	11.5	1.34	12.87	26.075	14.21
211	05:45:16	11.5	-1.1	11.6	23.41	10.49
212	05:45:16	11.5	0.03	9.52	22.127	9.55
213	05:45:17	11.5	1.27	10.08	17.127	11.35
214	05:45:17	11.5	-0.3	13.56	23.019	13.26
215	05:45:23	11.5	0.04	9.09	19.511	9.13
216	05:45:23	11.5	0.28	8.93	20.88	9.22
217	05:45:24	11.5	-0.19	8.7	22.445	8.51
218	05:45:24	11.5	-0.52	7.79	22.75	7.27
219	05:45:24	11.5	-0.23	11.03	24.89	10.79
220	05:45:25	11.5	0.87	14.06	22.383	14.93
221	05:45:25	11.5	-0.15	13.26	21.271	13.11
222	05:45:25	11.5	-0.7	13.44	25.097	12.74
223	05:45:25	11.5	-0.83	15.14	22.286	14.31
224	05:45:26	11.5	1.27	12.21	21.406	13.48
225	05:45:26	11.5	-0.77	11.33	20.99	10.56
226	05:45:26	11.5	-0.18	12.07	31.271	11.89
227	05:45:27	11.5	0.32	10.74	25.916	11.05

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
228	05:45:27	11.5	0.09	10.31	29.18	10.4
229	05:45:27	11.5	-0.66	10.23	22.714	9.57
230	05:45:28	11.5	0.38	13.35	21.479	13.73
231	05:45:28	11.5	0.16	13.23	22.872	13.39
232	05:45:28	11.5	0.71	11.37	28.52	12.08
233	05:45:29	11.5	0.44	11.42	17.958	11.86
234	05:45:29	11.5	-1.31	13.19	20.599	11.89
235	05:45:29	11.5	1.44	8.75	21.479	10.18
236	05:45:30	11.5	-1.21	9.05	23.325	7.84
237	05:45:30	11.5	0.12	10.22	20.146	10.34
238	05:45:31	11.5	0.69	11.44	25.097	12.13
239	05:45:32	11.5	-1.24	12.11	24.242	10.87
240	05:45:32	11.5	-1.72	14.45	24.572	12.73
241	05:45:33	11.5	3.47	10.03	27.396	13.5
242	05:45:34	11.5	-1.45	10.22	20.843	8.76
243	05:45:34	11.5	-5.43	8.51	16.858	3.08
244	05:45:35	11.5	1.62	9.21	23.985	10.83
245	05:45:35	11.44	-55.84	65.41	23.423	9.57
246	05:45:36	11.44	-4.96	33.04	31.687	28.08
247	05:45:36	11.26	- 176.22	208 59	32 665	32 37
247	05.45.30	11.20	24.45	9.09	21.858	15.36
240	05.45.37	11.24	0.43	67	19 767	7 13
249	05.45.38	11.24	23 11	28.55	19.707	5.11
250	05.45.44	11.21	0.15	3 34	7 53	3.49
251	05.45.44	11.21	1.6	2.54	8 117	<i>J</i> . 1 <i>J</i>
252	05.45.45	11.21	70.85	-69.38	3 362	1.13
255	05:45:51	11.20	41.98	-24 91	1 748	17.07
255	05:45:55	11.33	14 43	2 35	1 375	16.78
256	05:45:56	11.39	44 42	-28.13	1.579	16.70
250	05:46:03	11.37	31.17	-12.03	1.355	19.13
258	05.46.04	11.12	14.93	2.29	1.107	17.22
259	05.46.05	11.45	14.02	2.29	1 385	16.42
260	05:46:06	11.15	15.05	2.44	2,363	17.49
261	05:46:07	11.10	14 54	2 33	1 548	16.88
262	05.46.09	11 49	15.14	2.33	1.5.10	17.34
263	05:46:10	11.51	14 92	2.21	1 314	17.18
264	05:46:12	11.52	15.47	2.45	1.284	17.93

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
265	05:46:13	11.55	29.52	-11.33	1.345	18.18
266	05:46:16	11.6	52.83	-29.16	6.021	23.67
267	05:46:23	11.64	31.73	-12.93	1.467	18.8
268	05:46:24	11.68	41.78	-25.92	1.671	15.85
269	05:46:28	11.68	0.06	1.6	6.455	1.66
270	05:46:29	11.68	7.77	2.7	6.785	10.46
271	05:46:29	11.68	-0.11	3.3	6.76	3.19
272	05:46:30	11.65	-34.46	35.45	21.87	0.99
273	05:46:31	11.65	-0.4	10.06	27.591	9.66
			-			
274	05:46:31	11.33	323.44	184.82	25.305	-138.63
275	05:47:22	11.36	34.88	-15.31	1.314	19.57
276	05:47:24	11.38	17.07	2.79	1.589	19.86
277	05:47:26	11.39	15.95	2.67	1.284	18.62
278	05:47:27	11.43	33.9	-14.72	1.589	19.18
279	05:47:30	11.45	17.41	2.78	1.63	20.19
280	05:47:31	11.46	17.48	2.86	2.078	20.34
281	05:47:33	11.48	16.75	2.58	1.375	19.33
282	05:47:34	11.5	16.39	2.53	1.284	18.92
283	05:47:36	11.53	32.24	-13.79	1.284	18.45
284	05:47:38	11.54	15.1	1.81	1.314	16.91
285	05:47:40	11.58	37.17	-15.04	4.89	22.13
286	05:47:46	11.68	95.65	-75.66	1.528	20
287	05:47:51	11.68	-0.02	3.22	10.065	3.2
288	05:47:52	11.68	8.77	2.73	6.724	11.5
289	05:47:53	11.69	0.06	3.5	5.379	3.56
290	05:47:54	11.64	-42.67	46.06	7.408	3.38
201	05 40 45	11.00	-	205.4	20	~ ~ ~ ~
291	05:48:47	11.28	360.96	385.4	20	24.44
292	05:48:49	11.3	14.74	2.17	1.65	16.91
293	05:48:50	11.31	15.03	2.46	1.528	17.49
294	05:48:52	11.33	14.26	2.11	1.528	16.36
295	05:48:53	11.34	14.11	1.95	1.375	16.06
296	05:48:55	11.35	13.93	2.21	1.62	16.14
297	05:48:56	11.37	14.6	2.76	2.659	17.36
298	05:48:57	11.38	13.4	2.52	1.589	15.92
299	05:48:59	11.39	13	2.21	1.345	15.2
300	05:49:00	11.41	13.98	2.06	1.406	16.04
301	05:49:02	11.42	13.78	2.07	1.498	15.84

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
302	05:49:03	11.44	13.46	2.32	1.467	15.78
303	05:49:04	11.45	13.19	2.37	1.375	15.55
304	05:49:06	11.46	15.29	2.28	2.048	17.58
305	05:49:13	11.48	13.83	2.3	1.436	16.13
306	05:49:13	11.49	14.77	2.45	1.345	17.22
307	05:49:13	11.51	14.25	2.55	1.375	16.8
308	05:49:13	11.52	14.81	2.36	1.375	17.17
200	05 40 12	11.05	-	202.05	1 21 4	15 74
309	05:49:13	11.25	268.11	283.85	1.314	15.74
310	05:50:19	11.27	18.66	2.21	2.152	20.86
311	05:50:21	11.31	39.76	-17.13	1.284	22.64
312	05:50:24	11.35	38.08	-16.59	1.467	21.49
313	05:50:26	11.37	20.55	2.28	2.078	22.83
314	05:50:28	11.39	18.83	2.69	1.406	21.53
315	05:50:29	11.41	19.18	2.12	1.345	21.3
316	05:50:31	11.43	18.48	2.76	1.508	21.24
317	05:50:32	11.45	17.89	2.04	1.426	19.93
318	05:50:33	11.48	38.42	-17.19	2.078	21.23
319	05:50:39	11.5	18.58	2.41	1.345	20.99
320	05:50:39	11.52	19.52	2.4	1.589	21.92
321	05:50:39	11.54	18.89	2.24	1.345	21.13
322	05:50:40	11.56	20.81	2.16	4.865	22.97
323	05:50:42	11.58	19.23	2.76	1.548	22
324	05:50:43	11.6	18.31	2.56	1.63	20.88
325	05:50:44	11.62	19.47	2.31	1.304	21.78
326	05:50:46	11.67	55.86	-35.02	1.467	20.83
327	05:50:51	11.68	10.32	-9.24	7.518	1.08
328	05:50:52	11.69	0.76	2.41	7.543	3.17
329	05:50:53	11.64	-44.94	48.69	5.623	3.75
330	05:50:53	11.64	-1.19	31.84	31.283	30.65
331	05:51:29	11.57	-66.53	76.5	27.701	9.97
332	05:51:29	11.5	-71.13	11.49	19.425	-59.64
333	05:51:30	11.5	-1.38	13	23.716	11.62
224	05.51.20	11.00	-	255.01	20.052	10.76
225	05:51:30	11.20	245.14	255.91	20.953	10.70
333	05:51:34	11.29	33.20	-14.39	1.528	18.68
336	05:51:36	11.31	17.64	2.71	1.528	20.35
337	05:51:38	11.32	16.55	2.84	1.467	19.39
338	05:51:39	11.34	18.17	2.04	1.467	20.21

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
339	05:51:41	11.36	17.81	2.34	1.559	20.16
340	05:51:42	11.39	33.27	-14.03	1.498	19.23
341	05:51:45	11.41	16.76	2.21	1.467	18.98
342	05:51:46	11.42	16.02	2.58	1.63	18.6
343	05:51:48	11.46	32.43	-13.58	1.548	18.85
344	05:51:55	11.47	16.61	1.97	1.915	18.59
345	05:51:55	11.49	15.86	3.11	1.528	18.97
346	05:51:55	11.52	32.36	-13.31	1.467	19.05
347	05:51:56	11.55	29.48	-10.83	1.375	18.64
348	05:51:59	11.59	35.41	-12.89	6.418	22.52
349	05:52:02	11.6	15.8	2.59	1.508	18.39
350	05:52:03	11.62	15.36	2.25	1.711	17.61
351	05:52:05	11.63	15.07	2.51	1.589	17.57
352	05:52:06	11.67	40.4	-25.31	1.375	15.09
353	05:52:14	11.68	9.53	3.13	7.359	12.65
354	05:52:15	11.68	-5.91	8.11	3.557	2.2
355	05:52:15	11.68	-1.22	9.74	13.679	8.52
356	05:52:15	11.67	-1.03	4.96	13.252	3.93
357	05:52:15	11.6	-75.87	83.6	13.019	7.73
358	05:52:16	11.6	-0.3	11.31	20.244	11.02
359	05:52:16	11.54	-61.07	71.39	18.203	10.33
360	05:52:16	11.5	-35.98	11.12	26.833	-24.86
361	05:52:17	11.5	-1.6	16.01	25.562	14.4
362	05:52:18	11.5	0.34	11.78	22.127	12.13
363	05:52:18	11.5	0.8	7.53	22.127	8.34
364	05:52:19	11.5	-0.45	14.84	21.43	14.39
365	05:52:20	11.5	-0.35	16.81	21.344	16.45
366	05:52:20	11.5	0.34	10.42	22.848	10.76
367	05:52:21	11.5	0.45	10.69	22.408	11.13
368	05:52:21	11.5	-1.53	16.01	18.716	14.48
369	05:52:22	11.5	1.97	7.77	20.146	9.74
370	05:52:22	11.5	-0.46	14.05	26.882	13.59
371	05:52:23	11.5	-1.42	12.13	23.288	10.71
372	05:52:23	11.5	0.79	15.05	20.88	15.84
373	05:52:24	11.5	-0.34	14.13	20.146	13.79
374	05:52:24	11.5	1.12	10.34	24.278	11.46
375	05:52:25	11.5	0.08	10.64	21.271	10.73
376	05:52:26	11.5	-0.07	11.35	21.601	11.28

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
377	05:52:26	11.5	-1.18	16	23.753	14.82
378	05:52:27	11.5	0.93	11.13	24.217	12.06
379	05:52:27	11.5	-0.07	10.82	24.572	10.75
380	05:52:28	11.5	0.63	13.68	17.811	14.31
381	05:52:28	11.5	-0.66	10.39	18.985	9.73
382	05:52:34	11.5	0.3	15.63	23.997	15.94
383	05:52:34	11.5	-1.36	13.03	26.894	11.68
384	05:52:35	11.5	1.03	10.31	20.22	11.34
385	05:52:35	11.5	0.69	12.18	25.599	12.87
386	05:52:35	11.5	-1.76	9.95	20.146	8.18
387	05:52:36	11.5	0.75	13.99	20.061	14.75
388	05:52:36	11.5	-0.65	12.38	30.342	11.73
389	05:52:36	11.5	1.04	14.32	22.151	15.36
390	05:52:37	11.5	0.14	11.09	18.508	11.23
391	05:52:37	11.5	-0.79	13.17	20.073	12.39
392	05:52:37	11.5	-0.37	14.49	20.061	14.11
393	05:52:38	11.5	0.31	12.72	27.934	13.03
394	05:52:38	11.5	1.02	13.14	21.772	14.16
395	05:52:38	11.5	0.5	7.63	15.917	8.13
396	05:52:39	11.5	-0.74	15.31	23.85	14.58
397	05:52:39	11.5	-0.63	10.95	17.811	10.32
398	05:52:39	11.5	-0.38	8.42	22.445	8.04
399	05:52:39	11.5	0.43	11.73	15.721	12.16
400	05:52:40	11.5	-0.35	9.55	26.454	9.2
401	05:52:40	11.5	0.04	8.68	22.261	8.71
402	05:52:40	11.5	0.34	9.52	21.931	9.85
403	05:52:41	11.5	-0.81	14.54	27.946	13.73
404	05:52:41	11.5	1.45	12.84	19.67	14.29
405	05:52:42	11.5	-0.24	9.25	19.743	9.01
406	05:52:42	11.5	-0.47	9.35	19.278	8.88
407	05:52:43	11.5	0.29	9.51	21.564	9.81
408	05:52:43	11.5	1.09	7.73	24.657	8.82
409	05:52:44	11.5	-0.82	10.56	20.22	9.74
410	05:52:44	11.5	-0.89	14.84	22.286	13.95
411	05:52:45	11.5	-0.43	14.25	19.657	13.81
412	05:52:45	11.5	1.05	10.12	28.312	11.17
413	05:52:46	11.5	0.06	13.04	23.899	13.11
414	05:52:47	11.5	-0.14	12.87	21.772	12.72

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
415	05:52:47	11.5	-1.03	15.19	25.916	14.16
416	05:52:48	11.5	2.07	9.67	23.63	11.74
417	05:52:48	11.5	-1.53	12.41	26.894	10.87
418	05:52:49	11.5	1.45	8.36	25.501	9.81
419	05:52:54	11.5	-0.3	11.25	20.22	10.95
420	05:52:54	11.5	-0.31	10.74	20.599	10.43
421	05:52:55	11.5	-1.23	13.99	21.43	12.77
422	05:52:55	11.5	0.2	11.89	23.288	12.09
423	05:52:55	11.5	0.2	15.35	20.745	15.55
424	05:52:56	11.5	0.04	9.15	18.508	9.18
425	05:52:56	11.5	0.83	12.15	22.066	12.98
426	05:52:56	11.5	-0.41	9.05	21.895	8.64
427	05:52:57	11.5	-2.05	13.31	27.09	11.26
428	05:52:57	11.48	-19.56	32.72	23.264	13.15
429	05:52:57	11.48	-0.54	13.11	19.156	12.57
430	05:52:58	11.48	0.87	14.11	22.445	14.98
421	05.52.50	11.24	-	251.02	29.52	10.64
431	05:52:58	11.24	241.19	251.83	28.52	10.64
432	05:52:58	11.24	-0.03	/.21	25.464	/.18
433	05:52:59	11.21	-27.13	34.03	23.96	0.9
434	05:52:59	11.21	-0.00	3.21	0.748	3.15
435	05:52:59	11.25	22.06	-33.23	0.730	2.30
430	05:55:04	11.28	26.22	-15.52	2.702	18.43
43/	05:55:07	11.32	19 27	-14.4	1.389	21.93
438	05.52.14	11.34	10.02	2.31	1.0/1	20.88
439	05.55.14 05.52.14	11.30	19.92	2.72	1.732	22.04
440	05.53.14 05.53.14	11.30	10.20	2.14	1.400	21.42
1/12	05.53.14	11.37	19.04	3.48	1.548	21.52
443	05:53:17	11.41	18.27	3.40	1.546	22.03
444	05:53:18	11.15	19.65	2 73	1.65	22.10
445	05.53.20	11.13	20.27	2.55	2.241	22.30
446	05.53.20	11.17	19 49	2.33	1 467	22.02
447	05.53.21	11.15	18.82	2.96	1.107	21.78
448	05:53:22	11.51	17.91	2.90	1.732	20.87
449	05:53:25	11.55	18.3	2.39	1.559	20.7
450	05:53:27	11.57	22.26	3.05	6.143	25.31
451	05:53:28	11.59	20.05	3.03	1.508	23.09

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
452	05:53:34	11.61	20.09	2.79	1.711	22.88
453	05:53:34	11.63	19.07	3.06	1.589	22.12
454	05:53:34	11.68	49.28	-28.53	1.63	20.75
455	05:53:37	11.68	6.1	4.25	8.466	10.35
456	05:53:37	11.68	0	1.74	3.02	1.75
457	05:53:38	11.67	-13.08	18.36	11.381	5.28
458	05:53:39	11.67	-0.35	6.78	15.183	6.43
459	05:53:39	11.5	-165.5	172.46	12.799	6.96
460	05:53:40	11.5	-0.75	11.5	20.073	10.75
461	05:53:40	11.5	-0.07	12.28	24.193	12.21
462	05:53:41	11.5	-3.03	13.3	18.716	10.26
463	05:53:41	11.5	-0.06	11.26	22.848	11.19
464	05:53:42	11.5	-0.06	12.27	21.87	12.21
465	05:53:42	11.5	0.04	9.83	25.562	9.86
466	05:53:43	11.5	-0.52	11.16	23.997	10.65
467	05:53:44	11.5	0.23	15.29	26.259	15.52
468	05:53:44	11.5	0.62	12.77	23.276	13.39
469	05:53:45	11.5	0.67	11.77	19.266	12.43
470	05:53:45	11.5	-1.74	11.18	22.408	9.44
471	05:53:46	11.5	0.82	11.57	28.679	12.38
472	05:53:46	11.5	0.5	11.46	25.721	11.96
473	05:53:47	11.5	0.33	12.18	19.498	12.51
474	05:53:48	11.5	-0.2	7.44	15.721	7.25
475	05:53:48	11.5	-2.01	9.38	26.124	7.37
476	05:53:49	11.5	-2.17	14.84	19.266	12.66

Project Name	Port	Test Date	3/6/2018
Project Description		Pile Number	1-EOD
NUMERICAL	DATA		Capacity Method: (Non
NUMERICAL	0.41	VMX (ft/s)	Capacity Method: (Non 4.933
NUMERICAL Set (inch) Rebound (inch)	0.41 0.29	VMX (ft/s) DMX (inch)	Capacity Method: (Non 4.933 0.70

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
28	0.51	0.25	5.35	38.099
27	0.44	0.26	4.68	38.056
26	0.48	0.23	4.95	38.019
25	0.47	0.29	4.95	37.979
24	0.44	0.26	4.95	37.940
6	0.41	0.27	4.91	37.253
5	0.36	0.31	5.21	37.219
4	0.35	0.33	4.61	37.189
3	0.35	0.32	4.61	37.160
2	0.34	0.33	5.11	37.131
Average	0.41 inch	0.29 inch		
Max Varia	ation 0.17 inch	0.10 inch		

PDM REPORT

Project Name Port Project Description Test Date Pile Number 3/6/2018 1-EOD

COMPLETE VIEW

Test 2 of 3

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	05:57:08	21.14	110.33	2.59	1.773	112.93
2	05:57:09	21.16	19.41	3.36	1.834	22.77
3	05:57:10	21.18	19.25	3.4	1.752	22.65
4	05:57:11	21.2	18.53	3.37	1.834	21.9
5	05:57:13	21.22	19.03	2.86	2.608	21.9
6	05:57:14	21.24	19.71	3.02	2.017	22.73
7	05:57:16	21.26	20.02	2.88	1.711	22.9
8	05:57:17	21.28	19.56	3.01	1.62	22.57
9	05:57:18	21.3	20.5	2.72	2.017	23.23
10	05:57:20	21.32	22.57	3.47	5.33	26.04
11	05:57:21	21.34	21.7	2.59	1.681	24.29
12	05:57:23	21.36	21.76	3.25	1.793	25.01
13	05:57:24	21.38	21.19	2.54	1.915	23.72
14	05:57:25	21.4	19.34	1.93	1.711	21.27

0.91

PDM REPORT

Project Name Project Descriptio	Port	Test Date Pile Number	3/6/2018 1-EOD-2
NUMERICA	L DATA		Capacity Method: (None)
Set (inch)	0.80	VMX (th/s)	7.374

DMX (inch)

Set (inch) 0.80

Rebound (inch)	0.12
Capacity (kip)	-

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
14	0.76	0.08	5.62	70.223
13	0.83	0.10	6.28	70.160
12	0.86	0.13	5.88	70.090
11	0.85	0.10	5.51	70.019
10	0.89	0.14	17.49	69.948
6	0.78	0.12	6.62	69.677
5	0.75	0.11	8.56	69.612
4	0.73	0.13	6.02	69.550
3	0.76	0.13	5.75	69.489
2	0.76	0.13	6.02	69.426
Average	0.80 inch	0.12 inch		
Max Variati	on 0.16 inch	0.06 inch		

PDM REPORT

Project Name Test Date Port Pile Number Project Description

3/6/2018 1-EOD-2

COMPLETE VIEW

00:00	00:01	00:02	00:04	00:05	00:06	00:08	00:09	00:11 Tim	00:12 e (mm:	00:13 ss)	00:16	00:16	00:18	00:19	00:20	00:22	00:23
1																	
5																	
2																	
8																	
4																	
6																	
6																	
2																	
8																	
4																	
4																	
2																	
8																	
4																	
2																	
5																	
2																	
8																	
4																	
4																	

Test 3 of 3

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	05:58:32	23.6	430.76	3.34	9.156	434.1
2	05:58:32	23.59	-0.59	4.16	8.239	3.57
3	05:58:32	23.5	-97.64	102.33	8.398	4.69
4	05:58:33	23.51	16.85	13.96	17.31	30.82
5	05:58:34	23.52	0.92	9.19	18.325	10.1
6	05:58:34	23.41	- 102.12	112.61	18.154	10.49
7	05:58:35	23.41	-0.03	13.91	26.259	13.88
8	05:58:35	23.41	-0.49	13.83	22.408	13.34
9	05:58:36	23.41	0.23	13.14	31.271	13.37
10	05:58:36	23.41	0.03	10.85	23.924	10.88
11	05:58:37	23.41	0.76	8.81	18.826	9.58
12	05:58:38	23.41	-0.89	10.72	26.54	9.83
13	05:58:38	23.41	1.6	12.11	22.97	13.71
14	05:58:39	23.41	-0.63	9.98	22.445	9.35
15	05:58:39	23.41	-1.7	10.28	23.606	8.58
16	05:58:40	23.41	0.77	13.46	20.061	14.23
17	05:58:41	23.41	1.03	12.77	21.271	13.8
18	05:58:41	23.41	-0.7	9.75	18.166	9.06
19	05:58:42	23.42	2.14	11.91	23.63	14.05
20	05:58:42	23.41	-4.23	12.87	22.75	8.64
21	05:58:43	23.41	3.05	8.36	22.445	11.41
22	05:58:43	23.41	-0.41	12.11	21.564	11.7
23	05:58:44	23.41	-0.05	15.41	24.657	15.36
24	05:58:44	23.41	-0.72	13.66	24.89	12.94
25	05:58:45	23.41	0	9.65	20.489	9.65
26	05:58:45	23.41	-0.25	11.97	20.953	11.71
27	05:58:46	23.41	0.64	9.28	21.87	9.92
28	05:58:47	23.41	0.11	10.57	20.953	10.68
29	05:58:47	23.41	-0.93	15.67	21.271	14.74
30	05:58:48	23.41	1.01	14.48	22.714	15.49
31	05:58:48	23.41	-0.18	9.95	19.67	9.78
32	05:58:49	23.41	-0.67	12.38	23.716	11.71
33	05:58:49	23.41	-1.77	11.37	22.286	9.61
34	05:58:50	23.41	1.76	11.71	20.232	13.47
35	05:58:50	23.41	0.77	13.17	20.831	13.94
36	05:58:51	23.41	-0.66	8.85	18.508	8.19
37	05:58:56	23.41	0.9	13.56	19.67	14.46

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
38	05:58:56	23.41	-1.68	10.71	18.508	9.03
39	05:58:56	23.41	2.35	7.66	20.953	10.01
40	05:58:57	23.41	-1.46	12.98	25.916	11.52
41	05:58:57	23.41	0.85	9.14	20.097	9.99
42	05:58:57	23.41	-0.68	11.23	25.55	10.55
43	05:58:58	23.41	0.67	8.68	23.716	9.36
44	05:58:58	23.41	-1.01	9.47	27.75	8.45
45	05:58:58	23.41	0.76	9.05	24.156	9.8
46	05:58:59	23.41	-1.89	10.72	26.259	8.84
47	05:58:59	23.41	2.66	10.62	23.484	13.29
48	05:58:59	23.41	0.08	8.15	20.953	8.23
49	05:58:59	23.41	-1.38	10.52	22.775	9.14
50	05:59:00	23.41	0.32	8.21	23.056	8.52
51	05:59:00	23.41	-0.64	10.19	22.714	9.55
52	05:59:00	23.41	0.15	14.69	21.784	14.84
53	05:59:01	23.4	-13.61	24.93	24.608	11.31
54	05:59:01	23.4	-0.07	13.38	20.318	13.31
5.5	05.50.02	22.15	-	255 (7	22,422	11.40
55	05:50:02	23.13	244.21	233.07	23.423	16.61
57	05:59:02	23.15	-2.82	19.43	29.743	0.01
58	05.59.05	23.13	-5.27	2.62	27.2	18.24
59	05:59:04	23.13	0.25	2.02	<u> </u>	2 38
60	05:59:05	23.15	25.46	-16.67	5 367	8.78
61	05.59.09	23.13	12.42	3.2	2.653	15.62
62	05:59:11	23.18	14.61	3.87	1.626	18.48
63	05:59:16	23.2	15.01	3.76	1.62	18.76
64	05:59:17	23.21	14.75	3.87	1.694	18.62
65	05:59:17	23.23	14.98	3.7	1.729	18.68
66	05:59:17	23.24	14.05	3.87	1.554	17.91
67	05:59:18	23.25	14.08	3.82	1.589	17.9
68	05:59:19	23.27	13.4	3.36	1.502	16.75
69	05:59:21	23.28	13.57	3.33	2.008	16.9
70	05:59:22	23.29	12.15	3.7	1.484	15.86
71	05:59:23	23.3	12.17	3.99	1.45	16.15
72	05:59:25	23.32	11.89	3.95	1.554	15.84
73	05:59:26	23.33	11.64	3.86	1.426	15.5
74	05:59:28	23.34	11.53	3.82	1.554	15.35

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
75	05:59:29	23.35	11.27	3.8	1.65	15.07
76	05:59:31	23.36	11.02	3.91	1.487	14.92
77	05:59:36	23.37	12.17	3.71	1.467	15.88
78	05:59:36	23.39	11	4.39	1.327	15.39
79	05:59:37	23.4	10.88	3.99	1.624	14.87
80	05:59:37	23.41	10.19	4.25	1.45	14.43
81	05:59:38	23.42	10.49	4.29	1.345	14.78
82	05:59:39	23.43	10.82	4.16	1.513	14.97
83	05:59:41	23.44	10.14	4.18	1.635	14.33
84	05:59:42	23.45	9.83	4.2	1.375	14.03
85	05:59:43	23.46	9.96	3.79	1.391	13.75
86	05:59:45	23.47	12.94	4.35	3.166	17.29
87	05:59:46	23.48	10.25	4.36	1.659	14.61
88	05:59:48	23.49	10.06	4.57	1.345	14.63
89	05:59:49	23.5	10.09	3.94	1.484	14.04
90	05:59:51	23.51	9.2	4.13	1.554	13.33
91	05:59:56	23.52	10.12	4.24	1.773	14.36
92	05:59:56	23.53	10.03	4.87	1.447	14.9
93	05:59:56	23.54	10.1	4.01	1.554	14.11
94	05:59:57	23.55	9.23	4.5	1.45	13.73
95	05:59:58	23.57	20.44	-8.59	1.397	11.85
96	06:00:02	23.59	20.64	-10.76	1.864	9.87
97	06:00:07	23.59	0.37	3.44	4.205	3.8
98	06:00:08	23.59	3.47	5.29	6.027	8.76
99	06:00:09	23.59	0.49	3.27	5.269	3.76
100	06:00:09	23.59	-8.24	12.05	7.812	3.81
101	06:00:10	23.59	0.17	5.26	14.327	5.43
102	06:00:11	23.56	-29.83	36.29	12.75	6.46
103	06:00:16	23.56	3.29	14.57	33.007	17.86
104	06:00:16	23.5	-61.86	70.45	27.775	8.59
105	06:00:17	23.5	-0.81	9.89	17.212	9.07
106	06:00:17	23.5	-0.45	11.7	25.403	11.25
107	06:00:17	23.42	-81.72	92.3	17.811	10.57
108	06:00:17	23.42	0.16	11.64	25.097	11.8
109	06:00:18	23.41	-2.58	19.28	24.547	16.7
110	06:00:18	23.41	0.4	10.93	18.496	11.33
111	06:00:18	23.41	-0.56	8.87	24.608	8.31
112	06:00:19	23.41	0.8	11.26	21.43	12.05

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
113	06:00:19	23.41	-1.42	14.23	23.264	12.81
114	06:00:19	23.41	0.01	9.53	23.288	9.53
115	06:00:20	23.41	2.36	11.62	25.293	13.99
116	06:00:20	23.41	-0.02	9.08	22.445	9.06
117	06:00:20	23.41	-2.6	14.47	24.792	11.87
118	06:00:20	23.41	0.4	14.69	19.841	15.09
119	06:00:21	23.41	0.81	8.91	22.775	9.72
120	06:00:21	23.41	-0.36	11.57	20.733	11.21
121	06:00:22	23.41	-0.12	11.03	22.127	10.91
122	06:00:22	23.41	0.1	10.91	19.67	11.01
123	06:00:23	23.41	1.57	9.21	22.738	10.78
124	06:01:30	23.41	-1.6	13.75	23.019	12.15
125	06:01:30	23.41	0.98	12.95	20.953	13.93
126	06:01:31	23.41	-0.85	12.08	24.89	11.23
127	06:01:32	23.41	-0.28	11.9	24.217	11.62
128	06:01:32	23.41	-0.12	10.15	21.674	10.03
129	06:01:33	23.41	0.57	10.11	20.611	10.68
130	06:01:34	23.41	0.25	11.43	19.425	11.69
131	06:01:34	23.41	0.61	10.56	20.061	11.17
132	06:01:35	23.41	-0.74	10.38	19.266	9.64
133	06:01:35	23.41	-1.37	15.14	21.87	13.77
134	06:01:36	23.41	1.11	11.38	18.508	12.49
135	06:01:36	23.41	-0.21	12.92	21.43	12.71
136	06:01:37	23.41	0.7	10.22	18.985	10.92
137	06:01:38	23.41	-0.53	10.39	17.555	9.86
138	06:01:38	23.41	-0.55	13.71	31.687	13.15
139	06:01:39	23.41	1.24	10.2	25.501	11.44
140	06:01:39	23.41	0.41	9.32	25.916	9.73
141	06:01:40	23.41	-0.71	9.56	20.599	8.85
142	06:01:41	23.41	-2.29	11.63	24.584	9.33
143	06:01:41	23.41	1.94	12.09	22.934	14.03
144	06:01:42	23.42	2.2	5.29	18.252	7.49
145	06:01:42	23.41	-3.32	12.94	19.657	9.62
146	06:01:43	23.41	1.11	11.96	18.716	13.07
147	06:01:43	23.41	-3.34	9.9	23.264	6.56
148	06:01:44	23.41	2.7	7.65	19.951	10.35
149	06:01:44	23.41	-4.2	13.81	20.953	9.62
150	06:01:45	23.41	0.95	9.5	24.278	10.45

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
151	06:01:45	23.41	-1.45	15.75	19.144	14.29
152	06:01:46	23.4	-5.28	18.38	24.376	13.1
153	06:01:46	23.4	-0.05	8.35	23.643	8.3
154	06:01:47	23.4	0.37	14.59	27.897	14.96
155	06:01:48	23.39	-10.91	12.43	23.924	1.52
156	06:01:48	23.39	-0.6	16.33	22.481	15.73
157	06:01:49	23.35	-38.51	52.02	24.706	13.51
158	06:01:49	23.36	6.42	37.75	30.171	44.17
159	06:01:54	23.36	5.38	20.61	27.726	25.99
160	06:01:55	23.32	-47.55	68.95	31.014	21.39
161	06:01:55	23.31	-3.97	13.82	25.733	9.85
162	06:01:55	23.31	-0.94	11	23.386	10.06
163	06:01:56	23.15	-157	166.92	22.934	9.92
164	06:01:56	23.15	-0.37	7.08	23.802	6.71
165	06:01:56	23.15	-9.49	16.87	26.014	7.37
166	06:01:57	23.14	-1.25	6.03	10.672	4.78
167	06:01:57	23.14	-4.73	9.79	11.662	5.06
168	06:01:57	23.14	-3.88	6.21	13.973	2.33
169	06:01:57	23.13	-2.32	5.2	9.156	2.88
170	06:01:58	23.13	-0.82	3.41	10.819	2.58
171	06:01:58	23.13	-0.04	3.12	5.464	3.08
172	06:01:58	23.14	3.83	-0.98	6.748	2.86
173	06:02:02	23.14	2.92	3.94	5.049	6.86
174	06:02:04	23.17	34.09	-25.93	2.457	8.16
175	06:02:17	23.18	5	5.23	2.995	10.23
176	06:02:18	23.18	5.16	5.77	1.394	10.93
177	06:02:20	23.19	5.23	5.91	1.369	11.14
178	06:02:21	23.19	5.29	5.93	1.724	11.22
179	06:02:23	23.2	5.24	5.82	1.663	11.06
180	06:02:24	23.2	5.18	6.04	1.296	11.22
181	06:02:25	23.21	10.33	0.99	1.455	11.32
182	06:02:28	23.22	5.59	6.16	1.369	11.75
183	06:02:34	23.23	5.23	5.54	1.491	10.77
184	06:02:34	23.23	5.17	5.37	1.345	10.53
185	06:02:35	23.24	4.88	5.87	1.332	10.75
186	06:02:35	23.24	4.82	5.59	1.271	10.41
187	06:02:36	23.25	5.05	5.64	1.332	10.69
188	06:02:37	23.25	5.4	5.48	1.235	10.88

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
189	06:02:39	23.26	5.24	5.34	1.394	10.58
190	06:02:40	23.26	4.94	5.62	1.467	10.56
191	06:02:41	23.27	6.31	5.83	1.455	12.14
192	06:02:43	23.27	4.75	5.66	1.394	10.41
193	06:02:44	23.28	4.54	5.77	1.198	10.31
194	06:02:46	23.28	4.79	6.05	1.32	10.85
195	06:02:47	23.29	4.88	5.36	1.32	10.23
196	06:02:49	23.3	16.55	-6.76	1.381	9.78
197	06:02:55	23.31	4.61	6.17	1.369	10.77
198	06:02:56	23.31	4.75	5.81	1.528	10.56
199	06:02:57	23.32	4.89	5.41	1.43	10.3
200	06:02:59	23.32	4.74	5.87	1.308	10.61
201	06:03:00	23.33	8.72	1.33	1.32	10.05
202	06:03:03	23.33	4.25	5.08	1.369	9.33
203	06:03:04	23.35	13.23	-3.45	1.284	9.78
204	06:03:09	23.35	4.49	5.74	1.418	10.23
205	06:03:14	23.36	4.47	5.32	1.308	9.79
206	06:03:15	23.37	9.64	0.9	1.161	10.53
207	06:03:15	23.37	4.34	5.38	1.369	9.72
208	06:03:16	23.37	4.46	5.84	1.112	10.3
209	06:03:17	23.38	8.91	1.57	1.308	10.48
210	06:03:20	23.39	4.51	5.8	1.235	10.31
211	06:03:22	23.39	4.45	5.4	1.418	9.85
212	06:03:23	23.4	4.39	5.94	1.271	10.33
213	06:03:24	23.4	4.5	6.35	1.394	10.86
214	06:03:26	23.41	4.7	6.2	1.332	10.91
215	06:03:27	23.41	5.14	5.67	1.479	10.81
216	06:03:29	23.42	4.82	5.53	1.271	10.35
217	06:03:34	23.42	4.67	5.44	1.186	10.11
218	06:03:35	23.43	4.49	5.34	1.406	9.82
219	06:03:35	23.43	4.15	6.1	1.43	10.25
220	06:03:35	23.43	4.74	5.94	1.406	10.67
221	06:03:36	23.44	6	4.98	1.247	10.98
222	06:03:38	23.45	7.93	2.33	1.21	10.26
223	06:03:40	23.46	11.41	-1.8	4.56	9.61
224	06:03:45	23.47	14.86	-1.8	2.653	13.06
225	06:03:47	23.48	0.41	14.84	17.029	15.24
226	06:03:49	23.48	4.06	6.17	4.34	10.23

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
227	06:03:55	23.49	8.42	2.02	1.687	10.43
228	06:03:55	23.49	4.31	5.78	1.43	10.09
229	06:03:56	23.5	4.27	5.3	1.443	9.57
230	06:03:56	23.5	8.8	1.59	1.259	10.39
231	06:03:59	23.51	4.47	5.71	1.308	10.18
232	06:04:01	23.51	4.4	5.53	1.259	9.93
233	06:04:02	23.52	4.62	5.78	1.504	10.41
234	06:04:03	23.52	4.64	6.1	1.345	10.74
235	06:04:05	23.53	4.6	5.67	1.308	10.28
236	06:04:06	23.54	8.71	1.64	1.222	10.35
237	06:04:09	23.54	4.27	5.23	1.357	9.5
238	06:04:15	23.58	42.39	-32.81	1.308	9.58
239	06:04:28	23.58	0.22	1.03	3.142	1.25
240	06:04:34	23.59	5.12	2.3	3.423	7.43
241	06:04:35	23.59	1.07	1.03	4.975	2.09
242	06:04:35	23.59	0.71	2.92	8.594	3.63
243	06:04:36	23.59	0.16	2.13	6.516	2.28
244	06:04:36	23.59	0.62	3.1	10.636	3.72
245	06:04:36	23.59	-0.36	4.81	7.176	4.45
246	06:04:37	23.59	-2.01	5.77	6.491	3.76
247	06:04:37	23.59	-0.52	4.97	10.953	4.45
248	06:04:38	23.58	-9.79	15.12	12.812	5.33
249	06:04:39	23.58	2.67	9.19	15.391	11.86
250	06:04:39	23.58	-0.16	7.6	14.144	7.44
251	06:04:40	23.57	-12.12	18.11	13.851	5.99
252	06:04:41	23.55	-14.9	24.3	28.202	9.4
253	06:04:41	23.55	0.4	21.46	24.841	21.87
254	06:04:42	23.55	0.34	9	28.215	9.33
255	06:04:43	23.53	-24.33	31.42	29.559	7.09
256	06:04:43	23.53	2.17	10.11	19.168	12.28
			-		10.500	
257	06:04:44	23.42	112.37	125.3	18.569	12.92
258	06:04:44	23.42	0.71	19.79	22.261	20.5
259	06:04:45	23.42	0.44	9.98	22.591	10.42
260	06:04:45	23.42	-5.41	16.64	20.88	11.23
261	06:04:46	23.42	1.11	11.15	19.841	12.25
262	06:04:47	23.41	-1.89	12.76	21.87	10.87
263	06:04:47	23.42	0.66	14.57	21.895	15.23

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
264	06:04:48	23.41	-1.38	11.36	21.406	9.98
265	06:04:48	23.41	-0.79	15.26	22.97	14.47
266	06:04:49	23.42	2.17	9.99	18.447	12.17

PDM REPOR	г		
Project Name	Port	Test Date	3/6/2018
Project Description		Pile Number	1-EOD-3
NUMERICAL	DATA		Capacity Method: (None)
NUMERICAL Set (inch)	0.47	VMX (ft/s)	Capacity Method: (None) 5.610
NUMERICAL Set (inch) Rebound (inch)	0.47 0.16	VMX (this) DMX (inch)	Capacity Method: (None) 5.610 0.63

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
94	0.36	0.18	4.76	77.262
93	0.40	0.16	5.10	77.232
92	0.39	0.19	4.75	77.199
91	0.40	0.17	5.82	77.166
90	0.36	0.16	5.10	77.132
65	0.59	0.15	5.67	76.198
64	0.58	0.15	5.56	76.149
63	0.59	0.15	5.31	76.101
62	0.58	0.15	5.33	76.051
61	0.49	0.13	8.70	76.003
Average	0.47 inch	0.16 inch		
Max Varia	tion 0.23 inch	0.07 inch		

PDM REPORT

Project Name	Port	Test Date	3/6/2018
Project Description		Pile Number	1-EOD-3

COMPLETE VIEW

8 -P				-							_				
4															
8															
2															
6															
4															
4															
8															
2															
6															
2															
4															
8															
2															
6															
4															
4															
8															
2															
6															
5															
4															
8															
2															
6															
8															
4															
8															
2															
6															
0															
00:00 00:19	00:40 01	:01 01:2	3 01:44	02:05	02:27	02:48 Tim	03:09	03:30	03:52	04:13	04:34	04:58	06:17	05:38	05:69

A.2.1.2 Day 2, 6/4/2018: Fourteen Tests

Test 1 of 14

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	05:56:17	4.85	-22.54	15.01	19.765	-7.53
2	05:56:18	4.86	1.08	9.97	24.442	11.05
3	05:56:18	4.85	-0.65	11.61	22.837	10.95
4	05:56:19	4.85	-0.56	12.04	24.168	11.48
5	05:56:19	4.85	-0.41	14.98	22.837	14.57
6	05:56:20	4.85	1.07	10.36	26.718	11.43
7	05:56:21	4.85	-1.13	10.37	19.155	9.24
8	05:56:21	4.85	-0.65	12.6	23.671	11.95
9	05:56:22	4.85	0.65	12.24	21.32	12.89
10	05:56:22	4.85	0.55	16.48	19.69	17.03
11	05:56:23	4.86	0.79	12.14	27.004	12.92
12	05:56:23	4.85	-0.52	12.97	24.342	12.45
13	05:56:24	4.85	-0.58	17.07	27.651	16.49
14	05:56:24	4.85	-0.46	15.25	21.32	14.79
15	05:56:25	4.86	2.01	13.21	26.432	15.22
16	05:56:26	4.85	-0.56	10.81	22.962	10.25
17	05:56:26	4.86	0.36	12.98	23.011	13.34
18	05:56:27	4.85	-0.93	10.94	27.875	10
19	05:56:27	4.85	-0.36	10.92	20.424	10.56
20	05:56:28	4.86	1.54	10.99	26.171	12.53
21	05:56:28	4.85	-1.43	12.62	29.952	11.19
22	05:56:29	4.85	-0.92	12.03	23.335	11.11
23	05:56:29	4.85	0.76	10.1	19.703	10.86
24	05:56:30	4.85	0.29	14.37	20.785	14.66
25	05:56:31	4.86	1.36	15.56	24.977	16.92
26	05:56:31	4.85	-0.6	13.15	20.947	12.56
27	05:56:32	4.86	0.13	12.59	26.693	12.72
28	05:56:32	4.85	-0.9	10.14	23.136	9.23
29	05:56:33	4.85	0.58	12.33	23.111	12.91
30	05:56:33	4.85	-1.26	12.58	18.832	11.33
31	05:56:34	4.85	0.49	9.97	23.136	10.46
32	05:56:35	4.85	0.83	10.86	21.855	11.7
33	05:56:35	4.83	-25.29	13.28	24.28	-12.01
34	05:56:36	4.83	0.3	13.97	26.444	14.28
2.5		4	-	272.24	22 (22)	0.01
35	05:56:36	4.57	263.53	272.34	23.409	8.81
36	05:56:41	4.57	-0.4	4.9	10.573	4.5
37	05:56:41	4.59	19.86	-13.77	8.968	6.09

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
38	05:56:41	4.6	14.25	5.59	3.309	19.84
39	05:56:43	4.62	19.85	5.83	1.94	25.68
40	05:56:44	4.64	18.96	6.35	1.965	25.31
41	05:56:45	4.66	20.98	7.26	2.021	28.23
42	05:56:47	4.68	20.22	6.9	1.959	27.12
43	05:56:48	4.7	19.84	6.8	1.928	26.64
44	05:56:49	4.72	19.5	6.85	2.27	26.35
45	05:56:51	4.74	18.51	7.57	1.866	26.08
46	05:56:52	4.76	18.26	7.06	1.99	25.33
47	05:56:53	4.77	17.32	7.32	1.928	24.63
48	05:56:55	4.79	17.02	6.74	2.083	23.76
49	05:56:56	4.81	18.74	6.51	1.928	25.25
50	05:57:01	4.83	16.19	7.1	1.679	23.29
51	05:57:01	4.84	15.8	7	1.959	22.8
52	05:57:01	4.86	16.05	6.83	1.897	22.89
53	05:57:02	4.87	15.68	7.37	1.741	23.05
54	05:57:03	4.89	15.7	7.57	2.015	23.27
55	05:57:04	4.91	16.34	7.11	2.189	23.46
56	05:57:06	4.92	16.39	7.75	1.94	24.14
57	05:57:07	4.94	15.68	6.91	1.897	22.59
58	05:57:08	4.95	14.98	7.8	1.835	22.77
59	05:57:10	4.97	15.33	7.48	2.021	22.81
60	05:57:11	4.98	14.74	7.6	1.866	22.34
61	05:57:13	5	14.14	7.33	1.772	21.47

0.96

PDM REPOR	T		No.
Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD
NUMERICAL	DATA		Capacity Method: (None)
Set (inch)	0.69	VMX (ft/s)	6.301

DMX (inch)

TABLE VIEW

Rebound (inch)

Capacity (kip)

0.28

-

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
61	0.56	0.29	5.82	16.392
60	0.58	0.30	6.12	16.346
59	0.60	0.29	6.63	16.297
58	0.59	0.31	6.02	16.247
57	0.62	0.27	6.22	16.198
43	0.78	0.27	6.33	15.420
42	0.80	0.27	6.43	15.354
41	0.83	0.29	6.63	15.288
40	0.75	0.25	6.45	15.219
39	0.78	0.23	6.37	15.157
Average	0.69 inch	0.28 inch		
Max Variati	ion 0.27 inch	0.08 inch		

PDM REPORT

Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD	

COMPLETE VIEW

Test 2 of 14

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	06:00:25	8.11	185.15	10.32	1.99	195.46
2	06:00:26	8.12	7.49	10.81	1.99	18.3
3	06:00:28	8.12	7.39	10.78	1.804	18.17
4	06:00:29	8.13	7.66	10.54	1.959	18.2
5	06:00:31	8.14	7.49	10.67	2.021	18.16
6	06:00:32	8.15	7.93	10.44	1.866	18.38
7	06:00:33	8.16	8.39	10.56	2.208	18.95
8	06:00:35	8.16	8.24	10.33	1.928	18.57
9	06:00:36	8.17	7.44	10.82	2.021	18.25
10	06:00:38	8.18	6.9	11.32	2.27	18.22
11	06:00:39	8.19	6.87	11.39	2.301	18.26
12	06:00:40	8.19	7.76	10.73	2.208	18.49
13	06:00:42	8.2	7.71	10.08	2.239	17.79
14	06:00:43	8.21	7.48	9.73	2.27	17.21
15	06:00:45	8.22	7.46	11.23	1.959	18.69
16	06:00:49	8.22	7.34	11.3	2.189	18.64
17	06:00:49	8.23	7.12	10.97	1.94	18.08
18	06:00:50	8.24	7.85	10.36	2.065	18.21
19	06:00:51	8.25	7.67	9.72	1.791	17.38
20	06:00:52	8.25	8.29	8.27	1.791	16.55
21	06:00:53	8.26	7.65	10.32	1.667	17.97
22	06:00:55	8.27	7.08	10.74	1.741	17.82
23	06:00:56	8.28	7.37	11.05	1.99	18.42
24	06:00:58	8.28	7.36	10.78	2.083	18.14
25	06:00:59	8.29	8.03	10.51	1.804	18.54
26	06:01:01	8.3	7.52	10.45	1.99	17.97
27	06:01:02	8.31	6.57	10.52	1.648	17.09
28	06:01:03	8.31	7.61	10.41	1.866	18.02

PDM REPORT Company Name Report Date 11/2/2019 Client Name Report Time 7:47:24 PM Test Date Project Name Canaveral Day 2 4/6/2018 Project Description Test Time 6:00:25 AM Supervisor Superintendent Pile Number 1-EOD-2 PDM Pile Offset (ft) 30.480 Pile Type Final Penetration at Blow 28 (ft) 27.276 Hammer Stroke (ff) ft | inch 0.7 27.32 0.67 27.3 27.28 0.71 ٠ 27.26 0.73 0.30 27.24 0.26 0.71 27.22 0.30 1 27.2 0.32 27.18 0.29 27.16 27.14 27.12 27.1 27.08 27.06 27.04 27.02 27 26.98 26.96 26.94 26.92 26.9 26.88 26.86 26.84 26.82 26.8 0.72 26.78 1 26.76 0.72 26.74 ٠ 0.72 26.72 0.31 0.72 26.7 0.29 0.72 26.68 0.30 26.66 26.64 0.29 26.62 0.29 Blow #2 Blow #3 Blow #4 Blow #5 Blow #6 Blow #24 Blow #25 Blow #28 Blow #27 Blow #28 26.6 Blows

PDM REPORT			
Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD-2
NUMERICAL D	ATA		Capacity Method: (None)
Set (inch)	0.30	VMX (fVs)	6.244
Rebound (inch)	0.42	DMDC (inch)	0.71
Capacity (kip)			
TABLE VIEW			

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
28	0.30	0.41	6.12	27.276
27	0.26	0.41	5.41	27.251
26	0.30	0.41	6.53	27.229
25	0.32	0.41	5.92	27.204
24	0.29	0.42	6.84	27.178
6	0.31	0.41	6.12	26.732
5	0.29	0.42	6.63	26.706
4	0.30	0.41	6.43	26.681
3	0.29	0.42	5.92	26.656
2	0.29	0.43	6.53	26.632
Average	0.30 inch	0.42 inch		
Max Variati	ion 0.06 inch	0.02 inch		

PDM REPORT

Project Name	Canaveral Day 2	Test Date	4/6/2018
Project Description		Pile Number	1-EOD-2

COMPLETE VIEW

1								_	
			-	_					
_									

0:00 00:0	2 00:04 00	07 00:09	00:12 00:14	00:17 00:1	9 00:22 00:2	4 00:27 00:2	19 00:32 00	34 00:37 00	0.39 00
				T	me (mm:ss)				

Test 3 of 14

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	06:06:34	9.23	- 217.87	11.9	1.791	-205.96
2	06:06:35	9.24	5.35	12	1.866	17.35
3	06:06:36	9.24	5.09	12.3	1.692	17.39
4	06:06:38	9.25	5.43	12.18	1.891	17.61
5	06:06:39	9.25	5.69	12.05	1.94	17.74
6	06:06:41	9.26	5.5	11.89	1.741	17.39
7	06:06:42	9.26	5.25	11.87	1.667	17.12
8	06:06:44	9.27	4.92	12.13	1.791	17.05
9	06:06:45	9.27	4.63	12.06	1.741	16.69
10	06:06:47	9.28	5.09	11.97	1.741	17.06
11	06:06:48	9.28	5.76	12.02	1.692	17.78
12	06:06:50	9.29	5.07	11.88	1.592	16.95
13	06:06:51	9.29	4.84	11.98	1.617	16.82
14	06:06:52	9.3	6.41	11.6	1.717	18.01
15	06:06:57	9.31	5.41	11.62	1.7	17.03
16	06:06:57	9.31	4.86	11.74	1.741	16.6
17	06:06:58	9.32	5.06	11.84	1.679	16.91
18	06:06:58	9.32	5.79	11.7	1.596	17.49
19	06:07:00	9.33	5.45	11.83	1.791	17.28
20	06:07:01	9.33	5.26	12.13	1.841	17.39
21	06:07:03	9.34	5.74	12.22	1.717	17.96
22	06:07:04	9.34	5.69	12.18	1.766	17.86
23	06:07:06	9.35	5.61	12.39	1.866	18
24	06:07:07	9.35	5.92	12.15	1.791	18.07
25	06:07:08	9.36	5.58	11.82	1.816	17.39
26	06:07:10	9.37	5.45	11.56	1.692	17.02
27	06:07:11	9.37	4.88	11.95	1.692	16.83
28	06:07:13	9.38	5.59	12.03	1.766	17.62
29	06:07:17	9.38	5.35	12.07	1.928	17.42
30	06:07:17	9.39	5.74	11.73	1.692	17.47

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
31	06:07:17	9.39	5.77	11.45	1.617	17.22
32	06:07:19	9.4	5.99	12.08	1.692	18.06
33	06:07:20	9.4	5.85	12.28	1.791	18.13
34	06:07:21	9.41	5.96	11.94	2.065	17.89
35	06:07:23	9.42	5.39	11.85	1.816	17.24
36	06:07:24	9.42	5.93	12.31	1.804	18.24
37	06:07:26	9.43	5.61	12.02	1.721	17.64
38	06:07:27	9.43	5.36	11.66	1.596	17.02
39	06:07:29	9.44	5.68	11.76	1.596	17.44
40	06:07:30	9.44	5.86	12.3	1.7	18.16
41	06:07:32	9.45	5.65	12.28	1.783	17.92
42	06:07:37	9.46	6.37	11.96	1.721	18.32
43	06:07:37	9.46	5.44	11.84	1.534	17.28
44	06:07:37	9.47	5.73	11.69	1.555	17.42
45	06:07:38	9.47	5.51	11.8	1.721	17.31
46	06:07:39	9.48	5.81	12	1.741	17.81
47	06:07:40	9.49	6.42	11.73	1.928	18.16
48	06:07:42	9.49	6.09	11.5	1.741	17.59
49	06:07:43	9.5	5.7	10.93	1.581	16.63
50	06:07:45	9.51	7.99	11.65	2.505	19.65
51	06:07:46	9.51	5.68	11.79	1.7	17.47
52	06:07:47	9.52	6.38	11.51	1.7	17.89
53	06:07:49	9.52	5.39	11.54	1.667	16.94
54	06:07:50	9.53	5.5	11.71	1.667	17.22
55	06:07:52	9.53	6.26	11.76	1.816	18.02
56	06:07:57	9.54	6.48	11.91	1.841	18.38
57	06:07:57	9.55	7.02	11.59	1.965	18.62
58	06:07:57	9.55	6.35	11.79	1.717	18.14
59	06:07:58	9.55	-0.09	18.52	1.766	18.43

age i tra

PDM REPORT

Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD-3
NUMERICAL D	ATA		Capacity Method: (None)
Set (inch)	0.23	VMX (ft/s)	5.950
Rebound (inch)	0.47	DMX (inch)	0.70
Capacity (kip)	-		

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
58	0.25	0.46	5.63	31.347
57	0.28	0.46	6.45	31.326
56	0.25	0.47	6.04	31.303
55	0.25	0.46	5.96	31.282
54	0.22	0.46	5.47	31.261
6	0.22	0.47	5.71	30.374
5	0.22	0.47	6.37	30.356
4	0.21	0.48	6.20	30.337
3	0.20	0.48	5.55	30.319
2	0.21	0.47	6.12	30.303
Average	0.23 inch	0.47 inch		
Max Variati	ion 0.08 inch	0.03 inch		

PDM REPORT

Project Name Canaveral Day 2 Project Description Test Date Pile Number

4/6/2018 1-EOD-3

COMPLETE VIEW

00 00 0	4 00:09 00-1	3 00:18 00	23 00:28 00	33 00/38 00	42 00:47 0	0.62 00.67 01	02 01:06 01	11 01:16 01

Test 4 of 14

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	06:10:21	11.01	32.6	4.95	1.617	37.55
2	06:10:23	11.02	17.63	4.84	1.824	22.47
3	06:10:24	11.04	19.58	4.34	1.783	23.91
4	06:10:26	11.06	17.24	4.69	1.524	21.93
5	06:10:27	11.08	17.32	4.8	1.907	22.13
6	06:10:29	11.09	16.43	4.75	1.658	21.17
7	06:10:30	11.11	17.81	4.35	1.783	22.16
8	06:10:31	11.13	17.17	4.17	1.576	21.34
9	06:10:33	11.15	17.61	4.55	2.488	22.17
10	06:10:34	11.16	18.35	4.44	1.617	22.8
11	06:10:36	11.18	18.11	4.36	1.824	22.48
12	06:10:37	11.2	18.68	4.29	1.866	22.97
13	06:10:38	11.22	18.27	3.92	1.835	22.19
14	06:10:40	11.24	18.42	4.26	2.488	22.68
15	06:10:45	11.26	18.81	3.62	1.71	22.43
16	06:10:45	11.27	16.09	4.6	1.534	20.69
17	06:10:45	11.29	17.18	4.02	1.7	21.21
18	06:10:45	11.31	16.45	4.02	1.576	20.47
19	06:10:47	11.32	17.64	4.03	1.741	21.66
20	06:10:48	11.34	15.66	2.35	4.146	18

PDM REPORT Company Name Report Date 11/2/2019 Client Name Report Time 7:42:58 PM Project Name Test Date 4/6/2018 Canaveral Day 2 Project Description Test Time 6:10:20 AM Supervisor Superintendent Pile Number 1-EOD-4 PDM Pile Offset (ft) 30.480 Pile Type Final Penetration at Blow 20 (8) 37.204 Stroke (ft) Hammer ft | inch 0.71 37.2 0.85 0.62 37.15 9. M 0.81 1.11 0.69 37.1 0.83 24 0.65 37.06 0.81 37 0.68 1:33 36.95 0.63 36.9 36.85 36.8 36.75 36.7 36.65 36.6 38.55 36.5 36.45 0.83 1.1 36.4 0.87 0.65 36.35 0.86 36.3 14 0.68 0.94 36.25 0.68 0.88 36.2 0.77 14 36.15 Blow #2 Blow #3 Blow #4 Blow #5 Blow #6 Blow #16 Blow #17 Blow #18 Blow #19 Blow #20 36.1 Blows

Page 1 of 3

Project Name	Canaveral Day 2	Test Date	4/6/2018
Project Description		Pile Number	1-EOD-4
NUMERICAL	DATA		Capacity Method: (Non
NUMERICAL	0.67	VMX (Its)	Capacity Method: (Non 6.363
NUMERICAL Set (inch) Rebound (inch)	DATA 0.67 0.17	VMX (fbs) DMX (inch)	Cepacity Method: (Non 6.363 0.84

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
20	0.62	0.09	13.60	37.204
19	0.69	0.16	5.71	37.153
18	0.65	0.16	5.17	37.095
17	0.68	0.16	5.58	37.041
16	0.63	0.18	5.03	36.985
6	0.65	0.19	5.44	36.396
5	0.68	0.19	6.26	36.342
4	0.68	0.18	5.00	36.286
3	0.77	0.17	5.85	36.229
2	0.69	0.19	5.99	36.165
Average	0.67 inch	0.17 inch		
Max Variati	on 0.15 inch	0.10 inch		

PDM REPORT

Project Name Canaveral Day 2 Project Description Test Date Pile Number 4/6/2018 1-EOD-4

COMPLETE VIEW

-

Test 5 of 14

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	06:12:29	12.59	97.64	5.38	1.202	103.02
2	06:12:30	12.61	19.34	3.11	1.493	22.44
3	06:12:31	12.64	22.43	3.16	1.592	25.6
4	06:12:33	12.66	22.58	3.1	1.576	25.68
5	06:12:34	12.68	20.84	3.05	1.513	23.88
6	06:12:36	12.7	19.33	3.49	1.472	22.83
7	06:12:37	12.72	18.81	2.78	1.389	21.58
8	06:12:38	12.74	21.54	2.86	2.052	24.39
9	06:12:40	12.76	19.35	3.39	1.617	22.74
10	06:12:41	12.78	21.06	3.27	1.959	24.33
11	06:12:43	12.8	20.91	3.39	1.741	24.31
12	06:12:44	12.82	19.14	3.23	1.648	22.37
13	06:12:46	12.84	17.38	2.23	3.079	19.6

PDM REPORT Company Name Report Date 11/2/2019 Client Name Report Time 7:40:31 PM Project Name Test Date Canaveral Day 2 4/6/2018 Project Description Test Time 6:12:29 AM Superintendent Supervisor PDM Pile Offset (ft) Pile Number 1-EOD-5 30.480 Pile Type Final Penetration at Blow 12 (ft) 42.060 Hammer Stroke (ft) ft | inch 42.08 0.88 42.06 42.04 0.96 42.02 0.75 ٠ 42 41.98 41.96 0.96 41.94 1.1 0.82 41.92 41.9 0.90 41.88 2.1 0.83 41.86 41.84 0.96 41.82 0.76 41.8 2.1 41.78 41.76 41.74 0.85 41.72 41.7 0.90 41.68 1.44 41.66 41.64 0.94 41.62 0.76 1.1 41.6 41.58 41.56 1.01 41.54 0.82 41.52 41.5 1.01 41.48 0.89 41.46 41.44 41.42 0.88 41.4 0.88 41.38 41.36 41.34 0,76 Blow #2 Blow #3 Blow #4 Blow #5 Blow #6 Blow #8 Blow #9 Blow #10 Blow #11 Blow #12 41.32 Blows

Page 1 of 3

Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD-5
NUMERICAL DA	ТА		Capacity Method: (None)
Set (inch)	0.81	VMX (fVs)	5.467
Rebound (inch)	0.13	DMX (inch)	0.94
Capacity (kip)	-		

TABLE VIEW

PDM REPORT

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
12	0.75	0.13	5.41	42.060
11	0.82	0.13	5.71	41.997
10	0.83	0.13	6.43	41.928
9	0.76	0.13	5.31	41.859
8	0.85	0.11	6.73	41.796
6	0.76	0.14	4.83	41.663
5	0.82	0.12	4.97	41.600
4	0.89	0.12	5.17	41.531
3	0.88	0.12	5.22	41.457
2	0.76	0.12	4.90	41.384
Average	0.81 inch	0.13 inch		
Max Variati	ion 0.14 inch	0.03 inch		

PDM REPORT

Project Name Canaveral Day 2 Project Description Test Date Pile Number 4/6/2018 1-EOD-5

COMPLETE VIEW

00:03 00:05	00:05 00:08	00:09 00:1	0 00:12 00:1	3 00:14 00:16	6 00:17 00:1	8 00:20 00:21	00:22
	2 00:03 00:06	2 00:03 00:05 00:06 00:08	2 00:03 00:05 00:06 00:08 00:09 00:1 T	2 00:03 00:05 00:06 00:08 00:09 00:10 00:12 00:1 Time (mm.ss)	2 00:03 00:05 00:06 00:08 00:09 00:10 00:12 00:13 00:14 00:14 Time (mm:ss)	2 00:03 00:05 00:06 00:08 00:09 00:10 00:12 00:13 00:14 00:16 00:17 00:1 Time (mm:ss)	2 00:03 00:05 00:08 00:08 00:09 00:10 00:12 00:13 00:14 00:16 00:17 00:18 00:20 00:21 Time (mm:ss)

Test 6 of 14

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	06:13:58	14.14	115.57	3.91	1.617	119.48
2	06:13:59	14.16	25.49	3.64	1.824	29.13
3	06:14:01	14.19	24.77	3.56	1.783	28.33
4	06:14:02	14.21	25.37	3.45	1.617	28.82
5	06:14:04	14.23	22.54	3.83	1.451	26.37
6	06:14:05	14.26	25.22	3.47	1.617	28.68
7	06:14:06	14.29	26.13	3.26	1.658	29.39
8	06:14:08	14.31	25	3.42	1.7	28.41
9	06:14:09	14.33	23.17	3.56	1.462	26.72
10	06:14:11	14.36	25.47	3.28	3.016	28.75
11	06:14:12	14.38	23.41	3.38	1.866	26.79
12	06:14:13	14.41	24.36	3.48	2.073	27.85
13	06:14:15	14.43	23.44	3.6	1.617	27.05
14	06:14:16	14.43	-0.01	22.22	3.897	22.21

PDM REPOR	Т		
Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD-6
NUMERICAL	DATA		Capacity Method: (None)
Set (inch) Rebound (inch)	0.96	VMX (fivs) DMX (inch)	6.013 1.10

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
13	0.92	0.14	5.31	47.345
12	0.96	0.14	6.80	47.268
11	0.92	0.13	6.12	47.188
10	1.00	0.13	9.90	47.111
9	0.91	0.14	4.80	47.028
6	0.99	0.14	5.31	46.784
5	0.89	0.15	4.76	46.701
4	1.00	0.14	5.31	46.627
3	0.98	0.14	5.85	46.544
2	1.00	0.14	5.99	46.463
Average	0.96 inch	0.14 inch		
Max Variat	ion 0.12 inch	0.02 inch		

PDM REPORT

Project Name Canaveral Day 2 Project Description Test Date Pile Number 4/6/2018 1-EOD-6

COMPLETE VIEW

....

07 00:09 00:10 00:11 00:1	2 00:14 00:15 00:16	00:18 00:19 00:20 00
Time (mm:ss)		
	07 00:09 00:10 00:11 00:1 Time (mm:ss)	07 00:09 00:10 00:11 00:12 00:14 00:15 00:16 Time (mm:ss)

Test 7 of 14

Plow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity	DMX (mm)
DIOW	StartTime	(111)	(mm)	(IIIII)	(11/5)	(IIIII)
1	06:16:09	15.58	38.23	3.19	1.53	41.42
2	06:16:11	15.6	19.77	2.82	1.654	22.59
3	06:16:12	15.62	19.11	2.8	1.48	21.91
4	06:16:14	15.64	18.6	3.51	1.555	22.11
5	06:16:15	15.66	18.97	2.78	1.368	21.74
6	06:16:17	15.68	19.79	2.94	1.53	22.72
7	06:16:18	15.7	19.75	2.74	1.406	22.49
8	06:16:19	15.72	17.4	3.2	1.599	20.6
9	06:16:21	15.74	19.81	2.61	1.493	22.42
10	06:16:22	15.76	19.56	3.6	1.555	23.16
11	06:16:24	15.78	21.04	3.16	1.804	24.2
12	06:16:25	15.8	19.84	2.93	1.617	22.77

PDM REPORT Company Name Report Date 11/2/2019 Client Name Report Time 7:37:02 PM Test Date Project Name Canaveral Day 2 4/6/2018 Project Description Test Time 6:16:09 AM Supervisor Superintendent Pile Number 1-EOD-7 PDM Pile Offset (ft) 30.480 Pile Type Final Penetration at Blow 12 (ft) 51.826 Hammer Stroke (ft) ft | inch 0.90 51.84 2.1 61.82 51.8 0.95 61.78 0.78 2.4 51.76 51.74 51.72 0.91 1 61.7 0.83 51.68 51.66 0.88 61.64 0.77 51.62 51.6 0.81 51.58 0.78 51.56 51.54 51.52 0.68 61.5 51.48 0.89 51.46 2.1 51.44 51.42 0.86 51.4 0.78 2.4 61.38 61.36 0.87 61.34 0.75 51.32 **9**.4 61.3 51.28 0.86 51.26 10 0.73 61.24 51.22 0.89 61.2 0.75 51.18 61.16 51.14 0.78 Blow #3 Blow #4 Blow #5 Blow #6 Blow #8 Blow #9 Blow #10 Blow #11 Blow #12 61.12 Blows

Page 1 of 3

PDM REPORT Test Date Project Name 4/6/2018 Canaveral Day 2 Project Description Pile Number 1-EOD-7 NUMERICAL DATA Capacity Method: (None) Set (inch) VMX (ft/s) 0.76 5.136 Rebound (inch) 0.12 DMX (inch) 0.88 Capacity (kip)

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
12	0.78	0.12	5.31	51.826
11	0.83	0.12	5.92	51.761
10	0.77	0.14	5.10	51.692
9	0.78	0.10	4.90	51.628
8	0.68	0.13	5.25	51.563
6	0.78	0.12	5.02	51.441
5	0.75	0.11	4.49	51.376
4	0.73	0.14	5.10	51.314
3	0.75	0.11	4.86	51.253
2	0.78	0.11	5.43	51.190
Average Max Varia	0.76 inch tion 0.14 inch	0.12 inch 0.04 inch		

PDM REPORT

Project Name Canaveral Day 2 Project Description

Test Date Pile Number 4/6/2018 1-EOD-7

COMPLETE VIEW

-1				_		_					_		-
2													
2													
41													
6													
8													
8													
2													
-													
8													
8													
4													
2													
4													
0													
0													
4													
6													
•													
				10.00				11.11					11
00:00 00:01	00:02 00:03	00:05 00:0	6 00:08	00:09	00:10 00 Time (i	mm:ss)	00:14	00:16	00:17	00:18	00:20	00:21	00:
													• •
											ļ	-19	-Ú
											- 3	17	6

Test 8 of 14

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	06:17:41	17.11	36.92	2.75	1.555	39.67
2	06:17:42	17.13	22.43	1.88	1.679	24.32
3	06:17:43	17.15	20.36	2.89	1.741	23.25
4	06:17:45	17.17	21.45	2.54	1.617	23.99
5	06:17:46	17.19	20.37	2.82	2.749	23.19
6	06:17:48	17.21	20.56	2.82	1.741	23.38
7	06:17:49	17.23	20.83	2.92	2.032	23.75
8	06:17:51	17.25	21.75	3	1.679	24.75
9	06:17:52	17.27	20.27	2.93	1.617	23.2
10	06:17:53	17.3	21.78	2.61	1.804	24.39
11	06:17:55	17.32	20.19	2.98	1.648	23.18
12	06:17:56	17.01	-306.5	330.47	3.184	23.98
13	06:17:57	17.36	347.69	-347.71	72.424	-0.02
14	06:17:59	17.38	19.25	2.67	1.567	21.93
15	06:18:04	17.42	38.94	-16.75	1.741	22.19
16	06:18:04	17.4	-19.72	38.19	151.253	18.47

Page 1 of 3

PDM REPORT	Г		
Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD-8
NUMERICAL I	DATA		Capacity Method: (None)
NUMERICAL I	0.83	VMX (fbs)	Capacity Method: (None) 6.006
Set (inch) Rebound (inch)	0.83 0.11	VMX (ft/s) DMX (inch)	Capacity Method: (None) 6.006 0.93

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
11	0.80	0.12	5.41	56.810
10	0.86	0.10	5.92	56.744
9	0.80	0.12	5.31	56.672
8	0.86	0.12	5.51	56.606
7	0.82	0.12	6.67	56.535
6	0.81	0.11	5.71	56.466
5	0.80	0.11	9.02	56.399
4	0.84	0.10	5.31	56.332
3	0.80	0.11	5.71	56.262
2	0.88	0.07	5.51	56.195
Average	0.83 inch	0.11 inch		
Max Variat	ion 0.09 inch	0.04 inch		

PDM REPORT

Project Name	Canaveral	Day 2
Project Description		

Test Date Pile Number 4/6/2018 1-EOD-8

COMPLETE VIEW

32-			_	_	_	_									1			7	
04																			
76																			
48																			
2																			
92																			
64																			
36																			
8																			
8																			
2																			
4																			
6																			
10																			
4																			
2																			
14	_																		
6																			
8																			
12																			
2																			
4																			
6																			
8																			
6																			
12																			
4																			
6-1																			
8-																			
2																			
2																			
4																			
8-																			
18-																			
8-																			
5-																			
24																			
2																			
ũ.																			
24																			
4																			
6																			
18-																			
0																			
00	00 00	01 00	0:02	00:04	00:	05 0	00:06	00:08	00:09	00:11 Tir	00:12 ne (mm	00:14 35)	00:15	00:16	00:18	00:19	00:21	00:22	00:23
																		_	34.51
																			- C 1

Test 9 of 14

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	06:19:49	18.75	160.87	3.96	1.617	164.83
2	06:19:51	18.78	22.03	3.89	1.772	25.93
3	06:19:52	18.8	22.39	4.27	1.866	26.66
4	06:19:54	18.82	23.64	3.99	1.94	27.64
5	06:19:55	18.84	22.43	3.69	1.576	26.12
6	06:19:56	18.87	23.37	3.93	2.612	27.3
7	06:19:58	18.89	23.44	4.1	1.866	27.54
8	06:19:59	18.91	23.05	4.27	1.679	27.32
9	06:20:01	18.94	23.69	4.13	1.71	27.82
10	06:20:02	18.96	22.31	3.34	1.648	25.64
11	06:20:04	18.97	14.95	3.68	1.845	18.63

PDM REPORT Company Name Report Date 11/2/2019 Report Time Client Name 7:33:02 PM Project Name Test Date 4/6/2018 Canaveral Day 2 Project Description Test Time 6:19:48 AM Supervisor Superintendent PDM Pile Offset (ft) Pile Number 1-EOD-9 30.480 Pile Type Final Penetration at Blow 11 (ft) 62.254 Hammer Stroke (ft) ft Linch 62.28 0.73 62.26 62.24 1.01 62.22 0.59 ٩. 62.2 62.18 1.10 62.16 62.14 24 0.88 62.12 62.1 1.08 62.08 62.06 1.4 0.93 62.04 62.02 1.08 62 0.91 61.98 61.96 61.94 1.07 61.92 P.Ip 0.92 61.9 61.88 61.86 1.03 61.84 0.92 61.82 61.8 61.78 1.09 61.76 0.88 ٩., 61.74 61.72 1.05 61.7 ٩. 61.68 0.93 61.66 61.64 1.02 61.62 0.88 61.6 61.58 61.56 0.87 61.54 Blow #3 Blow #4 Blow #5 Blow #6 Blow #7 Blow #8 Blow #9 Blow #10 Blow #11. 61.52 Blows

Page 1 of 3

Project Name	Canaveral Day 2	Test Date	4/6/2018
Project Description	-	Pile Number	1-EOD-9
NUMERICAL	DATA		Capacity Method: (None
NUMERICAL Set (inch)	0.87	VMX (109)	Capacity Method: (None 6.074
NUMERICAL Set (inch) Rebound (inch)	0.87 0.15	VMX (ft/s) DMX (inch)	Capacity Method: (None 6.074 1.03

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
11	0.59	0.14	6.05	62.254
10	0.88	0.13	5.41	62.205
9	0.93	0.16	5.61	62.132
8	0.91	0.17	5.51	62.054
7	0.92	0.16	6.12	61.978
6	0.92	0.15	8.57	61.901
5	0.88	0.15	5.17	61.825
4	0.93	0.16	6.37	61.751
3	0.88	0.17	6.12	61.674
2	0.87	0.15	5.82	61.600
Average	0.87 inch	0.15 inch		
Max Variat	ion 0.34 inch	0.04 inch		

PDM REPORT

Project Name	Canaveral Day 2	Test Date	4/6/2018
Project Description		Pile Number	1-EOD-9

COMPLETE VIEW

1.44		_														
.88																
.32																
76																
12																
64																
08																
62																
.04																
20																
.72																
.16																
5.6																
.04																
.48																
.92																
.36																
2.8																
.24																
.68																
.12																
.56																
0																
00:00 00:00	00:01	00:02	00:03	00:04	00:05	80:00	00:07 Tim	00:08 e (mm:	00:09 55)	00:10	00:11	00:12	00:13	00:14	00:15	00:1

Test 10 of 14

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
Diow		(111)		(1111)	(11/5)	(1111)
1	06:21:11	20.25	137.98	4.33	2.146	142.31
2	06:21:13	20.28	27.04	4.49	2.083	31.53
3	06:21:14	20.31	26.62	4.45	2.015	31.07
4	06:21:15	20.33	25.75	5.03	2.115	30.78
5	06:21:17	20.36	26.64	4.87	2.115	31.51
6	06:21:18	20.39	27.82	4.52	2.882	32.33
7	06:21:20	20.41	25.28	5.16	1.99	30.44
8	06:21:21	20.44	25.93	5.31	2.27	31.24
9	06:21:22	20.47	25.69	4.28	2.27	29.97
10	06:21:24	20.49	19.7	4.05	3.135	23.75

PDM REPORT Company Name Report Date 11/2/2019 Report Time Client Name 7:31:35 PM Test Date Project Name Canaveral Day 2 4/6/2018 Project Description Test Time 6:21:10 AM Supervisor Superintendent Pile Number 1-EOD-10 PDM Pile Offset (ft) 30.480 Pile Type Final Penetration at Blow 10 (ft) 67.209 Stroke (ft) Hammer ft | inch 0.93 67.22 **Nata** 67.2 67.18 1.18 67.16 0.78 1.1 67.14 67.12 67.1 1.23 67.08 ħ. 1.01 67.06 67.04 67.02 1.20 67 66.98 1.02 66.96 66.94 1.27 66.92 2.1 1.00 66.9 66.88 66.86 66.84 1.24 66.82 14 1.10 66.8 66.78 66.76 1.21 66.74 ٩. 1.05 66.72 66.7 66.68 66.66 1.22 66.64 14 1.01 66.62 66.6 66.58 1.24 66.56 1.05 66.54 66.52 66.5 66.48 Blow #2 66.45 Blow #3 Blow #4 Blow #5 Blow #6 Blow #7 Blow #8 Blow #9 Blow #10 66.44 Blows

Page 1 of 3

PDM REPORT Project Name Canaveral Day 2 Test Date 4/6/2018 Project Description Pile Number 1-EOD-10 NUMERICAL DATA Capacity Method: (None) Set (inch) 1.01 VMX (ft/s) 7.609 Rebound (inch) 0.18 DMX (inch) 1.19 Capacity (kip) -

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
10	0.78	0.16	10.28	67.209
9	1.01	0.17	7.45	67.144
8	1.02	0.21	7.45	67.060
7	1.00	0.20	6.53	66.975
6	1.10	0.18	9.45	66.892
5	1.05	0.19	6.94	66.801
4	1.01	0.20	6.94	66.713
3	1.05	0.18	6.61	66.629
2	1.06	0.18	6.84	66.541

Average	1.01 inch	0.18 inch
x Variatio	ion 0.32 inch	0.05 inch

PDM REPORT

Project Name Canaveral Day 2 Project Description Test Date Pile Number 4/6/2018 1-EOD-10

COMPLETE VIEW

.56			_									
64												
44												
.88												
32												
76												
1.2												
64												
08												
52												
96												
14												
84												
28												
72												
16												
04												
40												
92												
36												
24												
68												
12												
56												
00:00 00:00	00:01 00:0	2 00:03	00:04 00:	05 00:06	00:06 00:07 Time (mm:s	00:08 00 (s)	09 00:10	00:10	00:11	00:12	00:13	00:14
												9 6
											_	0.21

Test 11 of 14

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	06:22:26	21.73	91.65	4.12	2.073	95.77
2	06:22:27	21.76	30.96	4.43	2.27	35.39
3	06:22:29	21.79	30.96	4.17	2.322	35.13
4	06:22:30	21.82	29.73	4.67	1.99	34.4
5	06:22:31	21.85	29.57	4.16	2.115	33.73
6	06:22:33	21.88	29.91	3.94	2.208	33.85
7	06:22:34	21.91	29.6	4.01	2.146	33.61
8	06:22:35	21.94	30.32	4.48	2.643	34.8
9	06:22:37	21.97	28.54	4.27	2.197	32.81
10	06:22:38	22	28.53	4.23	2.197	32.77
11	06:22:40	22.02	24.31	3.35	3.732	27.66

PDM REPORT

Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD-11
NUMERICAL D	ATA		Capacity Method: (None)
Set (inch)	1.15	VMX (ft/s)	7.815
Rebound (inch)	0.16	DMX (inch)	1.32
Capacity (kip)	-		

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
11	0.96	0.13	12.24	72.260
10	1.12	0.17	7.21	72.180
9	1.12	0.17	7.21	72.087
8	1.19	0.18	8.67	71.993
7	1.17	0.16	7.04	71.894
6	1.18	0.16	7.24	71.797
5	1.16	0.16	6.94	71.698
4	1.17	0.18	6.53	71.601
3	1.22	0.16	7.62	71.504
2	1.22	0.17	7.45	71.402
Average	1.15 inch	0.16 inch		
Max Variat	ion 0.26 inch	0.05 inch		

PDM REPORT

Project Name Canaveral Day 2 Project Description Test Date Pile Number 4/6/2018 1-EOD-11

COMPLETE VIEW

1	 	 	 	 	 	 	-
2							
+							
4							
+							
+							
-							
+							
-							
-							
T							
1							

Test 12 of 14

Plow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity	DMX (mm)
DIOW	StartTime	(111)	(mm)	(IIIII)	(11/5)	(IIIII)
1	06:23:44	23.26	93.31	3.24	2.146	96.55
2	06:23:45	23.29	29.9	3.43	2.239	33.33
3	06:23:47	23.32	29.65	3.42	2.446	33.07
4	06:23:48	23.35	30.46	3.42	2.778	33.88
5	06:23:49	23.38	31.86	3.28	2.612	35.13
6	06:23:51	23.41	32.18	3.12	2.457	35.3
7	06:23:52	23.45	33.47	3.3	3.7	36.77
8	06:23:54	23.48	32.32	3.45	2.197	35.76
9	06:23:55	23.51	31.23	3.3	2.571	34.53
10	06:23:56	23.53	22.68	3.36	6.136	26.04

PDM REPORT Company Name Report Date 11/2/2019 Client Name Report Time 7:25:58 PM Project Name Test Date 4/6/2018 Canaveral Day 2 Project Description Test Time 6:23:43 AM Supervisor Superintendent PDM Pile Offset (ft) Pile Number 1-EOD-12 30.480 Pile Type Final Penetration at Blow 10 (ft) 77.204 Stroke (ft) Hammer ft | inch 1.03 24 77.2 1.36 77.15 0.89 P. alata 77.1 1.41 77.05 1.23 Paulas. 77 1.45 78.95 1.27 P. App 76.9 76.85 1.39 1.32 Paul No. 76.8 76.75 1.38 1.27 Plate. 76.7 76.65 1.33 1.25 Ph.4 76.6 76.55 1.30 بالياس 1 1.20 76.5 76.45 1.31 1.17 وامر و 76.4 78.35 Blow #2 Blow #3 Blow #4 Blow #5 Blow #6 Blow #7 Blow #8 Blow #9 Blow #10 76.3 Blows

PDM REPOR	Т		
Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD-12
NUMERICAL	DATA		Capacity Method: (None)
Set (inch) Rebound (inch)	1.20	VMX (ft/s) DMX (inch)	9.892

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
10	0.89	0.13	20.13	77.204
9	1.23	0.13	8.43	77.130
8	1.27	0.14	7.21	77.027
7	1.32	0.13	12.14	76.921
6	1.27	0.12	8.06	76.812
5	1.25	0.13	8.57	76.706
4	1.20	0.13	9.11	76.601
3	1.17	0.13	8.03	76.502
2	1.18	0.13	7.35	76.404
Average	1.20 inch	0.13 inch		
Max Variat	ion 0.42 inch	0.01 inch		

PDM REPORT

Project Name	Canaveral Day 2	Test Date	4/6/2018
Project Description		Pile Number	1-EOD-12

COMPLETE VIEW

76.8	
74.24	
71.68	
69.12	
66.56	
64	
61.44	
58.88	
56.32	
53.76	
61.2	
48.64	
45.08	
43.52	
40.96	
38.4	
35.84	
33.28	
30.72	
28.16	
25.6	
23.04	
20.48	
17.92	
10.00	
12.0	
7.69	
5.12	
2.56	
00	2:00 00:00 00:01 00:02 00:03 00:03 00:04 00:06 00:06 00:07 00:08 00:09 00:10 00:11 00:11 00:12 00:13 Time (mm:ss)

Test 13 of 14

	~	Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	06:24:54	23.29	- 1400.78	1482.39	2.052	81.61
2	06:24:55	23.32	29.68	1475.55	2.208	1505.23
3	06:24:56	23.35	30.54	1466.49	2.177	1497.02
4	06:24:58	23.38	31.81	1456.26	2.073	1488.08
5	06:24:59	23.41	32.4	1445.08	2.654	1477.48
6	06:25:01	23.45	37.18	1430.27	2.27	1467.45
7	06:25:02	23.49	40.08	1411.74	2.27	1451.82
8	06:25:04	23.53	36.32	1395.91	2.27	1432.23
9	06:25:05	22.03	- 1500.76	2915.75	2.457	1414.99
10	06:25:06	18.98	- 3050.07	5986.43	3.955	2936.36
11	06:25:08	17.34	- 1638.21	7642.85	2.083	6004.64
12	06:25:09	17.36	19.89	7641.2	2.052	7661.09
13	06:25:11	17.38	19.3	7639.77	2.239	7659.07
14	06:25:16	17.4	19.46	7637.34	2.021	7656.8
15	06:25:16	17.42	19.54	7633.91	1.897	7653.45
16	06:25:16	17.43	17.03	7628.3	3.358	7645.32
17	06:25:16	25.07	7636.36	2.6	3.023	7638.96

PDM REPOR	Т		
Project Name Project Description	Canaveral Day 2	Test Date Pile Number	4/6/2018 1-EOD-13
NUMERICAL	DATA		Capacity Method: (None)
Set (inch) Rebound (inch) Capacity (kip)	6.22 220.96	VMX (ft/s) DMX (inch)	8.319 227.18

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
17	300.64	0.10	9.92	82.246
16	0.67	300.33	11.02	57.192
15	0.77	300.55	6.22	57.136
14	0.77	300.68	6.63	57.072
13	0.76	300.78	7.35	57.008
12	0.78	300.83	6.73	56.945
11	-64.50	300.90	6.84	56.880
10	-120.08	235.69	12.98	62.255
9	-59.08	114.79	8.06	72.261
8	1.43	54.96	7.45	77.185
Average	6.22 inch	220.96 inch		
Max Variat	ion 420.73 inch	300.80 inch		

PDM REPORT

Project Name Canaveral Day 2 Project Description Test Date Pile Number 4/6/2018 1-EOD-13

COMPLETE VIEW

2.4													_
0													
4													
8													
2													
6													
4													
4													
8													
2													
6													
2													
6													
4													
4													
8													
2													
6													
6													
4													
8													
2													
6													
8													
4													
0													
00.00.00.00	00.00 00.00	00.05	0.00		00.11 00	12 00.14	00.15	00.40	00.10	00.10		00.00	
00.00 00.01	00/02 00/04	00.05 0	0.06 00:00	00.09	Time (r	12 00:14	00.15	00.16	00.10	00.19	00.21	00.22	30.23
					Course for								

Test 14 of 14

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	06:27:31	24.79	-1424.56	1457.74	1.891	33.17
2	06:27:32	24.81	21.52	1444.69	1.638	1466.21
3	06:27:34	24.83	21.7	1431.31	1.99	1453.01
4	06:27:35	24.85	21.21	1418.05	1.717	1439.26
5	06:27:37	24.87	21.92	1405.09	1.845	1427.02
6	06:27:38	24.9	21.73	1391.62	1.783	1413.35
7	06:27:40	24.92	20.53	1379.2	1.658	1399.73
8	06:27:41	24.94	19.19	1368.5	1.721	1387.68
9	06:27:43	24.96	20	1356.4	1.804	1376.4
10	06:27:44	24.97	18.3	1345.46	1.638	1363.76
11	06:27:45	24.99	18.17	1334.32	1.534	1352.49
12	06:27:47	25.01	17.5	1324.37	1.692	1341.87
13	06:27:48	25.03	17.58	1314.94	1.741	1332.52
14	06:27:53	25.04	16.63	1306.31	1.791	1322.94
15	06:27:53	25.06	11.35	1302.7	2.015	1314.05
16	06:27:54	11.3	- 13756.72	15066.91	1.866	1310.19
17	06:27:54	11.32	22.87	15051.71	1.567	15074.58
18	06:27:56	11.34	18.46	15040.81	1.717	15059.26
19	06:27:57	9.33	-2008.37	17056.89	1.642	15048.52
20	06:27:59	9.34	5.77	17058.24	1.916	17064
21	06:28:00	9.34	5.67	17061.22	2.363	17066.88
22	06:28:02	9.35	5.59	17063	2.09	17068.59
23	06:28:03	9.35	5.92	17065.08	1.887	17071
24	06:28:05	9.36	5.6	17066.99	1.721	17072.59
25	06:28:06	9.37	5.42	17069.38	1.887	17074.8
26	06:28:07	9.37	4.89	17072.3	1.721	17077.19
27	06:28:09	9.38	5.61	17073.71	1.741	17079.32
28	06:28:13	9.38	5.34	17075.22	1.658	17080.56
29	06:28:14	9.39	5.75	17077.23	1.824	17082.98
30	06:28:14	9.39	5.74	17078.51	1.688	17084.25

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
31	06:28:15	9.4	6	17080.18	1.724	17086.18
32	06:28:16	9.4	5.83	17081.96	1.795	17087.79
33	06:28:18	9.41	5.97	17082.44	1.67	17088.41
34	06:28:19	9.42	5.4	17083.06	1.475	17088.46
35	06:28:21	9.42	5.97	17087.49	2.457	17093.46
36	06:28:22	9.43	7.62	17087.37	1.783	17094.99
37	06:28:24	9.44	9.03	17085.11	1.721	17094.14
38	06:28:25	9.45	7.31	17085.4	1.824	17092.71
39	06:28:26	9.45	7.27	17085.27	1.617	17092.54
40	06:28:28	9.46	6.25	17085.98	1.741	17092.23
41	06:28:33	9.46	4.08	17090.19	1.791	17094.27
42	06:28:34	9.47	5.83	17091.53	2.04	17097.35
43	06:28:34	9.47	5.34	17092.93	1.762	17098.26
44	06:28:34	9.48	6.2	17093.96	1.638	17100.17
45	06:28:35	9.49	6.37	17095.31	1.928	17101.68
46	06:28:37	9.49	5.76	17096.54	1.762	17102.31
47	06:28:38	9.5	3.67	17099.51	1.824	17103.18
48	06:28:40	9.5	8	17096.7	1.635	17104.7
49	06:28:41	26.6	17096.12	4.81	2.026	17100.93

PDM REPORT

Company Name Report Date 11/2/2019 Client Name Report Time 7:22:14 PM Project Name Test Date 4/6/2018 Canaveral Day 2 Project Description Test Time 6:27:29 AM Supervisor Superintendent Pile Number 1-EOD-14 PDM Pile Offset (ft) 30.480 Final Penetration at Blow 49 (ft) 87.274 Pile Type Hammer Stroke (ft) ft | inch 672.92 673.16 673.23 673.29 673.32 673.36 673.41 673.26 673.00 673.12 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 55 64 62 60 48 46 44 42 40 38 36 34 32 Biow #425 Biow #876 Biow #823 Biow #821 Biow #824 Biow #825 Biow #823 Biow #8714 Biow #821 Biow \$23.08 Blows

PDM REPOR	Т		
Project Name	Canaveral Day 2	Test Date	4/6/2018
Project Description		Pile Number	1-EOD-14
NUMERICAL	DATA		Capacity Method: (None)
Set (inch)	67.51	VMX (ft/s)	5.954
Rebound (inch)	605.70	DMX (inch)	673.21
Capacity (kip)	-		

TABLE VIEW

Blow	Set (inch)	Rebound (inch)	VMX (ft/s)	Penetration (ft)
49	673.08	0.19	6.65	87.274
48	0.31	673.10	5.36	31.184
47	0.14	673.21	5.99	31.158
46	0.23	673.09	5.78	31.146
45	0.25	673.04	6.33	31.127
44	0.24	672.99	5.37	31.106
43	0.21	672.95	5.78	31.086
42	0.23	672.89	6.69	31.068
41	0.16	672.84	5.88	31.049
40	0.25	672.68	5.71	31.036
Average	67.51 inch	605.70 inch		
Max Variati	ion 672.93 inch	673.02 inch		

PDM REPORT

Project Name Canaveral Day 2 Project Description Test Date Pile Number 4/6/2018 1-EOD-14

COMPLETE VIEW

00:00	00:04 0	0 00 0	0:13	00:18	00:23	00:28	00:32	00:37	00:42 ne (mm	00:47	00:51	00.68	01:01	01:06	01:10	01:15	01:20
56																	
12																	
68																	
24																	
8																	
36																	
92																	
48																	
14																	
6																	
16																	
12:																	
28																	
84																	
.4-																	
96																	
12																	
8																	
4																	
2																	
76																	
12																	
10																	
4																	
4																	
56																	
12																	
8																	
4																	
8																	
36																	
92																	

A.2.2 Reedy Creek, 7/19/2018, Floridian Place Extension: Ten Tests Test 1 of 10

Blow	StartTime	Penetration	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1 DIOW	12.22.27	10.607	27.1	1.4	3.062	25.7
2	12.22.20	19.097	24.2	-1.4	2.005	22.2
2	13.23.30	19.751	34.2	-1	2.093	27.5
3	13:23:39	19.759	27.8	-0.3	2.854	27.5
4	13:23:40	19.786	26.4	-0.1	2.876	26.3
5	13:23:42	19.811	25.7	0.1	2.894	25.8
6	13:23:45	19.834	23.1	0.6	2.883	23.7
7	13:23:45	19.854	19.8	0.6	2.795	20.4
8	13:23:45	19.873	18.4	0.8	2.656	19.2
9	13:23:47	19.89	17.7	0.8	2.546	18.5
10	13:23:48	19.908	18.1	0.7	2.594	18.8
11	13:23:49	19.924	15.3	0.8	2.598	16
12	13:23:50	19.939	14.9	0.7	2.631	15.6
13	13:23:52	19.953	14.2	0.9	2.488	15.1
14	13:23:53	19.966	13.6	0.8	2.448	14.5
15	13:23:54	19.98	13.4	1	2.385	14.4
16	13:23:55	19.992	12	0.6	2.301	12.6
17	13:23:56	20.011	19.4	-10	2.279	9.3
18	13:24:00	20.015	3.9	-1.9	2.524	2
19	13:24:01	20.015	0.4	3	3.739	3.5
20	13:24:01	20.014	-1.2	4.3	4.581	3.1
21	13:24:02	20.001	-12.9	15.3	8.25	2.4
22	13:24:02	20	-1.6	3.3	11.452	1.7
23	13:24:05	19.963	-36.4	43.2	14.218	6.9

PDM REPORT Stable Reference Monitoring Company Name Report Date 18/4/2019 Client Name Report Time 3:56:22 PM Project Name Test Date 14/3/2019 Disney Test Time Project Area A1 1:23:22 PM Superintendent Supervisor Pile Number 7-EOD PDM Pile Offset (m) 8.200 Pile Type Final Penetration at Blow 16 (m) 19.992 Hammer Stroke (m) 1.000 m | mm 12.6 20 14.4 19.99 12.0 14.5 19.98 19.97 13.4 15.1 19.96 13.6 15.6 19.95 14.2 19.94 19.93 14.9 19.92 19.91 19.9 19.89 19.88 19.87 19.86 19.85 19.84 19.83 25.8 19.82 19.81 19.8 26.3 19.79 25.7 19.78 27.5 19.77 26.4 19.76 19.75 33.3 19.74 27.8 19.73 19.72 35.7 19.71 34.2 19.7 19.69 19.68 19.67 37.1 19.66 Blow #2 Blow #4 Blow #1 Blow #3 Blow #5 Blow #12 Blow #13 Blow #14 Blow #15 Blow #16 19.65 Blows

PDM REPOR	Т		
Project Name	Disney	Test Date	14/3/2019
Project Area	A1	Pile Number	7-EOD
NUMERICAL	DATA		
Set (mm)	21.9	VMX (m/s)	2.52
Rebound (mm)	0.1	DMX (mm)	22.1

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
16	12.0	0.6	2.30	19.992
15	13.4	1.0	2.39	19.980
14	13.6	0.8	2.45	19.966
13	14.2	0.9	2.49	19.953
12	14.9	0.7	2.63	19.939
5	25.7	0.1	2.89	19.811
4	26.4	-0.1	-	19.786
3	27.8	-0.3	-	19.759
2	34.2	-1.0		19.731
1	37.1	-1.4	-	19.697
Average	21.9	0.1	2.52	
Max Variation	25.1	2.4	0.59	

PDM REPORT Test Date 14/3/2019 Project Name Disney Project Description Pile Number 7-EOD A1 COMPLETE VIEW m 20.02 : 20.01 20 19.99 19.98 19.97 19.96 19.96 19.94 19.93 19.92 19.91 19.9 19.89 19.88 19.87 19.86 19.85 19.84 19.83 19.82 19.81 19.8 19.79 19.78 19.77 19.76 19.76 19.74 19.73 19.72 19.71 19.7 19.69 19.68 19.67 19.66 00:00 00:02 00:04 00:07 00:09 00:11 00:14 00:16 00:19 00:21 00:24 00:26 00:28 00:31 00:33 00:36 00:38 00:41 Time (mm:ss) PDM Serial Number: PG2024174

Test 2 of 10

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	15:36:49	20.027	27.4	1.9	3.896	29.3

DW REPOR	रा			
Project Name Project Area	Disney A1		Test Date Pile Number	19/7/2018 P1-EOD
NUMERICAL	DATA			Capacity Method: (Nor
Set (mm) Rebound (mm) Capacity (kN)	27.4 1.9		VMX (m/s) DMX (mm) EMX (kJ)	0.00 29.3
ABLE VIEW	/			
Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
1	27.4	19	-	20.027
Average	27.4	1.9	0.00	

PDM REPORT

Project Name Disney Project Description A1 Test Date Pile Number 19/7/2018 P1-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 3 of 10

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	15:39:01	21.034	33.7	1.4	1.19	35.2
2	15:39:02	21.137	103.3	-66	1.667	37.3
3	15:39:06	21.271	133.5	-98.1	1.177	35.5
4	15:39:11	21.303	32.7	1.7	1.342	34.4
5	15:39:13	21.367	63.6	-28.6	1.579	35
6	15:39:15	21.336	-30.6	62.6	1.619	32.1

PDM REPORT Stable Reference Monitoring Company Name Report Date 18/4/2019 Client Name Report Time 4:13:20 PM Project Name Disney Test Date 19/7/2018 Project Area Test Time 3:39:00 PM A1 Supervisor Superintendent Plie Number P1-EOD-2 PDM Pile Offset (m) 13.000 Final Penetration at Blow 6 (m) Pile Type 21.336 Hammer Stroke (m) 1.000 m | mm 32.1 21.5 ٠ 21.49 21.48 -30.6 21.46 21.45 35.0 21.43 21.42 34.4 63.6 21.4 21.39 21.38 32.7 21.36 21.36 21.36 21.34 21.33 21.32 21.31 21.3 21.29 36.5 21.27 21.26 21.25 21.24 133.5 21.22 21.21 21.2 21.19 37.3 21.17 21.16 21.15 21.14 21.13 35.2 103.3 21.12 33.7 21.1 Blow #1 Blow #2 Blow #3 Blow #4 Blow #5 Blow #6 21.09 Blows

PDM REPORT Project Name Disney Test Date 19/7/2018 Project Area Pile Number P1-EOD-2 A1 NUMERICAL DATA Capacity Method: (None) Set (mm) 56.0 VMX (m/s) 1.60 DMX (mm) Rebound (mm) -21.1 34.9 Capacity (kN) EMX (kJ) . .

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
6	-30.6	62.6	1.62	21.336
5	63.6	-28.6	1.58	21.367
4	32.7	1.7	-	21.303
3	133.5	-98.1		21.271
2	103.3	-66.0	-	21.137
1	33.7	1.4		21.034

Average	56.0	-21.1	1.60
Max Variation	164.1	160.7	0.04

PDM REPORT

Project Name	Disney	Test Date	19/7/2018
Project Description	A1	Pile Number	P1-EOD-2

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 4 of 10

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	15:40:02	23.036	36	2.2	1.489	38.3
2	15:40:03	23.073	37.2	0.7	1.991	37.9
3	15:40:05	23.147	73.7	-35.1	1.697	38.6
4	15:40:07	23.185	37.9	1.8	1.835	39.7
5	15:40:09	23.295	110.4	-71.9	1.714	38.4
6	15:40:13	23.333	37.9	1.7	1.974	39.6

PDM REPORT Stable Reference Monitoring

Company Name Client Name Project Name Project Area Supervisor	Disney A1	Report Date Report Time Test Date Test Time Superintendent	18/4/2019 4:12:13 PM 19/7/2018 3:40:01 PM
Pile Number	P1-EOD-3	PDM Pile Offset (m)	13.000
Pile Type		Final Penetration at Blow 6 (m)	23.333
Hammer		Stroke (m)	1.000

PDM REPORT	Г		
Project Name	Disney	Test Date	19/7/2018
Project Area	A1	Pile Number	P1-EOD-3
NUMERICAL	DATA		Capacity Method: (None)
Set (mm)	55.5	VMX (mis)	1.84
Rebound (mm)	-16.8	DMX (mm)	38.8
Canacity (MN)		ENV /k h	

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
6	37.9	1.7	1.97	23.333
5	110.4	-71.9	1.71	23.295
4	37.9	1.8		23.185
3	73.7	-35.1		23.147
2	37.2	0.7	-	23.073
1	36.0	2.2		23.036

Average	55.5	-16.8	1.84
Max Variation	74.3	74.1	0.26

PDM REPORT

4.00			
	00:05 00:06 00:07 00 Time (mm:ss)	0:08 00:08 00:09 0	0:10 00:10 00:11 00:12
	0:02 00:03 00:04 00:05	0.02 00:03 00:04 00:06 00:05 00:06 00:07 0 Time (mm:ss)	0:02 00:03 00:04 00:06 00:05 00:06 00:07 00:08 00:08 00:09 0 Time (mm:ss)

PDM Serial Number: PG2024174

Test 5 of 10

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	15:51:10	23.631	-368.8	2.1	6.407	-366.7
2	15:51:11	23.642	11.1	-8.4	4.987	2.7

PDM REPORT Stable Reference Monitoring

Company Nama Client Name Project Name Project Ansa Supervisor	Disney A1	Report Date Report Time Test Date Lest Time Superintendent	1844/2019 4:11:19 PM 1977/2018 3:51:10 PM	
Pile Number Pile Type Hammer	P1-F00-4	POM Pile Offset (m) Final Penetration at Blow 2 (m) Stroke (m)	13.000 23.642 1.000	

m mm						
26E307						
1.2E307						
15E307						
1.1E307						
05F307						
15307						
12301						
1.5E308						
9E306						
1.5E306						
8E306						
01E308						
01ES08						
01E306						
01E306						
01E306						
045508						
045306						
UIESUB						
01E306						
01E306						
01E306						
01E306						
01E306						
010306						
01E306						
07E306						
62E291	-366.7	Blow #1	-368.8	2.7	Blow #2	11.1

Blows

PDM REPORT Project Name Disney Test Date 19/7/2018 Project Area A1 Pile Number P1-EOD-4 NUMERICAL DATA Capacity Method: (None) Set (mm) -178.9 VMX (m/s) 0.00 DMX (mm) Rebound (mm) -3.2 -182.0 Capacity (kN) EMX (kJ) --

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
2	11.1	-8.4		23.642
1	-368.8	2.1	-	23.631

Average	-178.9	-3.2	0.00
Max Variation	379.9	10.4	-1998.00

PDM REPORT

Project Name	Disney	Test Date	19/7/2018
Project Description	A1	Pile Number	P1-EOD-4

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 6 of 10

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	15:52:40	26.104	103.7	-76	1.645	27.7
2	15:52:45	26.184	80.7	-51.6	1.87	29.1
3	15:52:48	26.237	52.9	-24.3	1.593	28.7
4	15:52:51	26.315	77.6	-48.8	2.078	28.8
5	15:52:55	26.365	50.5	-23.4	1.789	27.1
6	15:52:57	26.34	-25	52.9	2.061	27.9

PDM REPORT Stable Reference Monitoring Company Name Report Date 18/4/2019 Client Name Report Time 4:08:44 PM Test Date Project Name Disney 19/7/2018 Project Area Test Time A1 3:52:39 PM Supervisor Superintendent Pile Number P1-EOD-5 PDM Pile Offset (m) 13.000 Pile Type Final Penetration at Blow 6 (m) 26.340 Hammer Stroke (m) 1.000

Blows

PDM REPOR			
Project Name	Disney	Test Date	19/7/2018
Project Area	A1	Pile Number	P1-EOD-5
	D.4.7.4		
NUMERICAL	DATA		Capacity Method: (None)
Set (mm)	56.7	VMX (m/s)	1.92
Rebound (mm)	-28.5	DMX (mm)	28.2
Capacity (kN)	-	EMX (kJ)	-

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)	
6	-25.0	52.9	2.06	26.340	
5	50.5	-23.4	1.79	26.365	
4	77.6	-48.8		26.315	
3	52.9	-24.3	-	26.237	
2	80.7	-51.6	-	26.184	
1	103.7	-76.0	-	26.104	

Average	56.7	-28.5 1.92
Max Variation	128.7	128.9 0.27

PDM REPORT

PDM Serial Number: PG2024174

Test 7 of 10

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	15:53:56	27.025	25.2	1.8	1.212	27
2	15:53:57	27.078	53	-25.3	1.472	27.8
3	15:54:00	27.128	49.8	-23.4	1.299	26.4
4	15:54:02	27.177	48.8	-22.9	1.342	25.9
5	15:54:05	27.202	25	1.3	1.299	26.4
6	15:54:06	27.226	24.4	1.4	1.393	25.9

PDM REPORT Stable Reference Monitoring

Company Name				Report Date		18/4/2	2019
lient Name				Report Time		4:07:4	40 PM
roject Name	Disney	f		Test Date		19/7/2	2018
roject Area	A1			Test Time		3:53:5	53 PM
upervisor				Superintendent			
lie Number	P1-E0	D-6		PDM Pile Offset (m)		13.00	0
le Type				Final Penetration at	Blow 6 (m)	27.22	6
ammer				Stroke (m)		1.000	
6.95							25.9
8.94							9.00
6.93					26.4		
5.92					-		24.
6.91							
26.9						25.0	
6.89				26.9			
6.87							
6.86							
6.86							
6.84				48.8			
6.83			26.4				
6.82							
5.81							
26.8			49.8				
6.78	27	.8					
6.77		1					
6.76							
6.76							
6.74		53.0					
6.73							
5.72	25.2						
Blov	w #1	Blow #2	Blow #3	Blow #4	Blow	#5	Blow #6

PDM REPOR	Т		
Project Name	Disney	Test Date	19/7/2018
Project Area	A1	Pile Number	P1-EOD-6
NUMERICAL	DATA		Capacity Method: (None)
NUMERICAL Set (mm)	DATA 37.7	VMX (mis)	Capacity Method: (None)
NUMERICAL Set (mm) Rebound (mm)	37.7 -11.2	VMX (mis) DMX (mm)	Capacity Method: (None) 1.35 26.6

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
6	24.4	1.4	1.39	27.226
5	25.0	1.3	1.30	27.202
4	48.8	-22.9		27.177
3	49.8	-23.4	-	27.128
2	53.0	-25.3	-	27.078
1	25.2	1.8		27.025

Average	37.7	-11.2	1.35
Max Variation	28.6	27.1	0.09

PDM REPORT

PDM Serial Number: PG2024174

Test 8 of 10

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	15:55:15	29.043	43.5	-19.7	2.078	23.8
2	15:55:18	29.128	84.5	-60.8	1.645	23.8
3	15:55:23	29.169	41.1	-18.3	1.697	22.8
4	15:55:25	29.209	39.6	-17.4	2.182	22.3
5	15:55:28	29.292	82.8	-58.8	1.87	24
6	15:55:33	29.35	58.6	-36.1	1.887	22.4
7	15:55:36	29.37	20.3	2.4	1.997	22.7
8	15:55:38	29.391	20.6	2.2	2.13	22.8

PDM REPORT Stable Reference Monitoring

Company Name Client Name Project Name Project Area Supervisor	Disney A1	Report Date Report Time Test Date Test Time Superintendent	18/4/2019 4:06:34 PM 19/7/2018 3:55:13 PM
Pile Number	P1-EOD-7	PDM Pile Offset (m)	13.000
Pile Type		Final Penetration at Blow 8 (m)	29.391
Hammer		Stroke (m)	1.000

PDM REPORT	-		
Project Name Project Area	Disney A1	Test Date Pile Number	19/7/2018 P1-EOD-7
NUMERICAL [DATA		Capacity Method: (None)
Set (mm)	48.9	VMX (m/s)	1.97
Rebound (mm)	-25.8	DMX (mm)	23.1
Capacity (kN)		EMX (kJ)	-

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
8	20.6	2.2	2.13	29.391
7	20.3	2.4	2.00	29.370
6	58.6	-36.1	1.89	29.350
5	82.8	-58.8	1.87	29.292
4	39.6	-17.4	-	29.209
3	41.1	-18.3	-	29.169
2	84.5	-60.8		29.128
1	43.5	-19.7	-	29.043

Average	48.9	-25.8	1.97
Max Variation	64.2	63.2	0.26

PDM REPORT

Project Name	Disney	Test Date	19/7/2018
Project Description	A1	Pile Number	P1-EOD-7

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 9 of 10

DI	С. (T.	Penetration	Set	Rebound	Velocity	DMX
BIOW	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	15:56:43	30.02	20.3	1.8	1.143	22.1
2	15:56:44	30.063	42.4	-19.8	1.385	22.6
3	15:56:46	30.125	62.6	-40.5	1.515	22.1
4	15:56:50	30.148	22.7	1.5	1.537	24.2
5	15:56:51	30.169	21.2	1.6	1.456	22.8
6	15:56:52	30.19	20.6	1.6	1.449	22.1
7	15:56:54	30.231	41.7	-19.2	1.427	22.4
8	15:56:56	30.272	40.8	-18.8	1.414	22
9	15:56:59	30.294	21.6	1.8	1.378	23.4
10	15:57:00	30.356	62.3	-39.7	1.349	22.5
11	15:57:04	30.397	40.7	-18.6	1.4	22.1
12	15:57:06	30.415	18.2	1.3	1.4	19.4
13	15:57:07	30.441	26	1.6	1.913	27.6

PDM REPORT	Stable Reference Monitoring		1
Company Name		Report Date	18/4/2019
Client Name		Report Time	4:05:00 PM
Project Name	Disney	Test Date	19/7/2018
Project Area	A1	Test Time	3:56:42 PM
Supervisor		Superintendent	
Pile Number	P1-EOD-8	PDM Pile Offset (m)	13.000
Pile Type		Final Penetration at Blow 6 (m)	30.190
Hammer		Stroke (m)	1.000
Project Area Supervisor Pile Number Pile Type Hammer	A1 P1-EOD-8	Test Time Superintendent PDM Pile Offset (m) Final Penetration at Blow 6 (m) Stroke (m)	13.000 30.190 1.000

Blows

PDM REPORT Project Name Test Date Disney 19/7/2018 Project Area Pile Number P1-EOD-8 A1 NUMERICAL DATA Capacity Method: (None) VMX (m/s) Set (mm) 21.5 1.45 Rebound (mm) DMX (mm) 23.1 1.6 EMX (kJ) Capacity (kN) --

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
6	20.6	1.6	1.45	30.190
5	21.2	1.6	1.46	30.169
4	22.7	1.5		30.148

Average	21.5	1.6	1.45
Max Variation	2.1	0.1	0.01

PDM REPORT

Project Name	Disney	Test Date	19/7/2018
Project Description	A1	Pile Number	P1-EOD-8

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 10 of 10

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	15:58:17	32.02	20	1.6	1.576	21.6
2	15:58:18	32.04	20.2	2	1.68	22.3
3	15:58:19	32.161	120.6	-98.1	1.714	22.5
4	15:58:27	32.2	38.9	-17.4	1.853	21.5
5	15:58:29	32.274	73.8	-52.8	1.772	21
6	15:58:34	32.37	96.7	-75	1.657	21.7
7	15:58:41	32.407	36.8	-16.7	1.685	20.2
8	15:58:43	32.428	21.3	1.7	1.807	23

PDM REPORT	Stable Refere	nce Monitorii	ng				
Company Name Client Name				Report Date Report Time		18/4/2019 4:02:45 P	M
Project Name	Disney			Test Date		19/7/2018	}
Project Area	A1			Test Time		3:58:16 P	M
Supervisor				Superintendent			
Pile Number	P1-EOD-9			PDM Pile Offse	t (m)	13.000	
Ne Type				Final Penetratic	on at Blow 8 (m)	32.428	
lammer				Stroke (m)		1.000	
m mm							22.0
32.1							23.0
32.08						4.7	21.3
32.06							
32.04					_	36.4	
32.02							
32							
31.98					21.7		
31.96	-						
1.94				-	96.7		
31.92							
31.9				21.0			
31.88				73.8			
31.86			21.5	-			
1.84			38	-			
1.82	-		-				
31.8							
31.78	-						
31.76							
31.74		22.5					
31.72	22.3	420					
31.7 21.6		120.					
31.68	20.2						
20 81.66 Blow #1	Blow #2	Blow #3	Blow #4	Blow #5	Blow #6	Blow #7	Blow #8

PDM REPOR	Т		
Project Name	Disney	Test Date	19/7/2018
Project Area	A1	Pile Number	P1-EOD-9
NUMERICAL	DATA		Capacity Method: (None)
	Britin		
Set (mm)	53.6	VMX (m/s)	1.73
Set (mm) Rebound (mm)	53.6 -31.8	VMX (mis) DMX (mm)	1.73 21.7

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
8	21.3	1.7	1.81	32.428
7	36.8	-16.7	1.69	32.407
6	96.7	-75.0	1.66	32.370
5	73.8	-52.8	1.77	32.274
4	38.9	-17.4	-	32.200
3	120.6	-98.1	-	32.161
2	20.2	2.0	-	32.040
1	20.0	1.6	-	32.020

Average	53.6	-31.8	1.73
Max Variation	100.6	100.2	0.15

PDM REPORT

PDM Serial Number: PG2024174

PDM REPOR	Г		
Project Name Project Area	Disney A1	Test Date Pile Number	19/7/2018 P1-EOD-10
NUMERICAL	DATA		Capacity Method: (None)
Set (mm)	20.5	VMX (m/s)	1.62
Rebound (mm)	1.6	DMX (mm)	22.1
Capacity (kN)	-	EMX (kJ)	-

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
14	19.5	1.8	1.55	33.457
13	20.0	1.5	1.68	33.437
12	20.8	1.1	1.51	33.417
11	22.3	1.9	1.65	33.396
10	19.7	1.6	1.58	33.374
9	20.5	1.3	1.64	33.354
8	20.6	1.9	1.73	33.334

Average	20.5	1.6	1.62
Max Variation	2.8	0.8	0.23

PDM REPORT

PDM Serial Number: PG2024174

A.2.3 Ellis Road I-95 Overpass, 11/30/2018: Eight Tests Test 1 of 8

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	10:36:20	5.023	22.5	-8.8	2.544	13.8
2	10:36:29	5.028	5.3	6.3	1.178	11.6
3	10:36:30	5.033	5.1	6.1	0.985	11.2
4	10:36:30	5.038	4.9	6.2	0.943	11.2
5	10:36:30	5.043	4.9	6	0.975	11
6	10:36:31	5.048	5.1	6.4	0.978	11.5
7	10:36:31	5.053	5.4	6.2	1.007	11.6
8	10:36:32	5.059	5.2	6.2	1.046	11.4
9	10:36:32	5.064	5.3	5.9	1.071	11.2
10	10:36:32	5.069	5.1	5.8	1.035	10.8
11	10:36:34	5.074	4.8	5.5	1.01	10.3
12	10:36:35	5.078	4.5	5.1	0.964	9.6
13	10:36:36	5.082	4.3	4.9	0.96	9.2
14	10:36:38	5.087	4.6	4.6	0.957	9.1
15	10:36:39	5.097	10.4	5.8	1.728	16.1
16	10:36:41	5.102	5.1	5.7	1.757	10.8
17	10:36:42	5.108	5.2	5.8	1.775	10.9
18	10:36:45	5.113	5.2	5.8	1.036	10.9
19	10:36:45	5.118	5.2	5.9	1.039	11.1
20	10:36:46	5.123	5.5	5.9	1.044	11.4
21	10:36:47	5.129	5.4	6	1.049	11.4
22	10:36:49	5.134	5.3	5.9	1.067	11.2
23	10:36:50	5.139	5.3	6	1.062	11.3
24	10:36:52	5.145	5.4	5.8	1.067	11.2
25	10:36:53	5.149	4.5	5.5	1.009	10
26	10:36:54	5.155	5.2	5.8	0.976	11
Averag	e (mm)		5.3	5.8	1.1	11.1
Sta	andard Dev (m	m)	1.1	0.4	0.2	1.3
Avera	ge (in)		0.21	0.23	0.04	0.44
Standard Dev (in) Note: Blow 1 excluded			0.04	0.02	0.01	0.05

PDM REPORT Stable Reference Monitoring Company Name Report Date 25/4/2019 Client Name Report Time 4:02:23 PM Project Name Test Dete 12 30/11/2018 Test Time Project Area 192 10:36:02 AM Supervisor Superintendent 3-EOD-2 PDM Pile Offset (m) Pile Number 8.000 Pile Type Final Penetration at Blow 26 (m) 5.155 Stroke (m) Hammer 1.000 m | mm 11.0 5.24 10.0 6.236 11.2 5.23 11.3 5.225 11.2 5.2 6.22 4.5 5.215 5.4 5.21 5.3 5.206 5.3 5.2 5.196 5.19 5.185 5.18 5.175 5.17 5.165 5.16 5.155 5.15 5.145 5.14 11.5 5.136 11.0 5.13 11.2 5.125 11.2 5.12 11.6 5.1 5.115 4.9 5.11 4.9 5.106 5.1 5.1 5.3 5.096 5.09 Blow #5 Blow #6 Blow #22 Blow #23 Blow #24 Blow #25 Blow #26 Blow #2 Blow #3 Blow #4 5.085 Blows

PDM REPOR	Т		
Project Name	12	Test Date	30/11/2018
Project Area	192	Pile Number	3-EOD-2
NUMERICAL	DATA		Capacity Method: (None)
Set (mm)	5.1	VMX (m/s)	1.02
Rebound (mm)			
Reported (mm)	6.0	DMX (mm)	11.1

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
26	5.2	5.8	0.98	5.155
25	4.5	5.5	1.01	5.149
24	5.4	5.8	1.07	5.145
23	5.3	6.0	1.06	5.139
22	5.3	5.9	1.07	5.134
6	5.1	6.4	0.98	5.048
5	4.9	6.0	0.97	5.043
4	4.9	6.2		5.038
3	5.1	6.1	-	5.033
2	5.3	6.3		5.028
Average	5.1	6.0	1.02	
Max Variation	1.0	0.8	0.09	

PDM REPORT

Project Name 12 Project Description 192 Test Date Pile Number 30/11/2018 3-EOD-2

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 2 of 8

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	10:42:11	6.606	5.7	4.9	1.35	10.7
2	10:42:12	6.606	-0.2	0.7	1.185	0.4
3	10:42:12	6.611	5.8	5	1.515	10.8
4	10:42:13	6.611	-0.2	0.6	1.339	0.4
5	10:42:14	6.616	5.2	5.5	1.416	10.7
6	10:42:14	6.616	0	0.9	1.255	0.9
7	10:42:15	6.621	5	5	1.368	9.9
8	10:42:16	6.626	4.6	4.9	1.281	9.4
9	10:42:17	6.626	0	0.9	1.416	0.8
10	10:42:18	6.631	5.3	4.3	1.292	9.6
11	10:42:18	6.631	-0.3	0.7	1.372	0.4
12	10:42:19	6.631	0	0.6	1.237	0.6
13	10:42:19	6.635	4.4	4.6	1.244	9
14	10:42:20	6.639	3.6	-2.9	1.2	0.7
15	10:42:21	6.639	0.5	1	1.277	1.6
16	10:42:21	6.654	14.1	4.8	2.462	18.9
17	10:42:30	6.658	4.8	4.8	2.535	9.6
18	10:42:30	6.667	8.3	-7.4	2.495	0.9
19	10:42:30	6.663	-3.6	2.2	1.31	-1.4
20	10:42:31	6.668	4.8	5.2	1.35	10
21	10:42:33	6.673	5	5.5	1.485	10.5
22	10:42:33	6.678	5	5	1.778	10
23	10:42:33	6.687	9.5	0.3	1.712	9.8
24	10:42:34	6.706	18.4	-8.4	1.742	10
25	10:42:34	6.701	-4.5	2.6	1.551	-1.9
26	10:42:35	6.706	5.2	4.7	1.529	9.9
27	10:42:36	6.711	5	4.7	1.606	9.7
28	10:42:38	6.716	4.6	4.5	1.573	9.1
29	10:42:39	6.72	4.3	3.9	1.643	8.1
30	10:42:40	6.724	4.2	4.1	1.559	8.3
31	10:42:41	6.744	19.4	-3.9	2.195	15.5
32	10:42:43	6.74	-3.7	2.8	2.14	-0.9
33	10:42:44	6.745	4.9	5.8	2.137	10.7
34	10:42:45	6.75	5.4	5.5	1.482	10.9
35	10:42:47	6.756	5.4	5.1	1.555	10.5
36	10:42:48	6.772	16	-4.5	1.665	11.6
37	10:42:54	6.776	4.5	5.3	1.763	9.8
38	10:42:54	6.786	10	0.5	1.763	10.5

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
39	10:42:55	6.791	4.6	-3.6	1.588	1
40	10:42:57	6.796	5.2	4.8	1.712	10
41	10:42:58	6.805	9.2	0.1	1.679	9.3
42	10:43:00	6.81	4.3	4.1	1.742	8.4
43	10:43:02	6.814	4.4	3.7	1.57	8.1
44	10:43:03	6.826	11.9	4.3	2.59	16.2
45	10:43:04	6.83	4.5	-3.6	2.528	0.9
46	10:43:05	6.835	4.6	4.9	2.554	9.5
47	10:43:06	6.843	8.3	-7.4	1.54	0.8
48	10:43:07	6.84	-3.1	2.5	1.617	-0.6
49	10:43:08	6.845	4.8	5.8	1.599	10.6
50	10:43:09	6.86	15.1	-4.9	1.551	10.2
51	10:43:13	6.86	0.5	-2.4	1.434	-1.9
52	10:43:14	6.865	4.6	5.4	1.361	10
53	10:43:14	6.87	5.2	5.2	1.467	10.5
54	10:43:23	6.875	4.7	5	1.632	9.7
55	10:43:24	6.886	11.4	-10.3	1.701	1.1
56	10:43:24	6.882	-4.7	2.5	1.668	-2.1
57	10:43:24	6.895	13.2	-3.2	1.785	10
58	10:43:25	6.901	6.6	-5.4	1.987	1.1
59	10:43:25	6.903	1.8	-2.5	1.998	-0.7
60	10:43:25	6.903	-0.4	1	1.906	0.6
61	10:43:26	6.906	3.2	3.7	1.844	6.9
62	10:43:26	6.91	3.8	-2.7	2.228	1.1
63	10:43:27	6.91	0.1	1.3	3.168	1.4
64	10:43:28	6.909	-0.7	2	3.45	1.3

PDM REPORT Stable Reference Monitoring

	-		
Company Name		Report Date	25/4/2019
Client Name		Report Time	3:59:25 PM
Project Name	12	Test Date	30/11/2018
Project Area	192	Test Time	10:42:11 AM
Supervisor		Superintendent	
Pile Number	3-EOD-3	PDM Pile Offset (m)	8.200
Pile Type		Final Penetration at Blow 30 (m)	6.724
Hammer		Stroke (m)	1.000

PDM REPOR			
Project Name	12	Test Date	30/11/2018
Project Area	192	Pile Number	3-EOD-3
NUMERICAL	DATA		Capacity Method: (None)
Set (mm)	4.7	VMX (m/s)	1.58
Rebound (mm)	4.4	DMX (mm)	9.0
Capacity (kN)		EMX (kJ)	

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)	
30	4.2	4.1	1.56	6.724	
29	4.3	3.9	1.64	6.720	
28	4.6	4.5	1.57	6.716	
27	5.0	4.7	1.61	6.711	
26	5.2	4.7	1.53	6.706	

Average	4.7	4.4	1.58
Max Variation	1.0	0.8	0.11

PDM REPORT

Project Name	12	Test Date	30/11/2018
Project Description	192	Pile Number	3-EOD-3

COMPLETE VIEW

PDM Seriel Number: PG2024174

Test 3 of 8

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	13:16:23	8.604	4.2	-22.8	5.5	-18.6

PDM REPORT	Stable Reference Monitoring		
Company Name Client Name Project Name Project Area Supervisor	12 192	Report Date Report Time Test Data Test Time Superintendent	25/4/2019 3:49:48 PM 30/11/2018 1:15:56 PM
Pile Number Pile Type Hammer	4-EOD-2	PDM Pile Offset (m) Final Penetration at Blow 1 (m) Stroke (m)	-1.000 8.604 1.000
m mm			
8.608			
8.606			
3.604			
3.602			
8.6			
.598			43
1.596			***
3.694	1		
3.592			
8.59			
8.588	-18.6		
8.586			
8.584			
3.682			
8.68			
3.578	and hundred a store		
3.575			
5.6/4		. has all her her I her	
0.572			
0.0/			
0.000			
8 504			

PDM REPOR	т		
Project Name Project Area	12 192	Test Date Pile Number	30/11/2018 4-EOD-2
NUMERICAL	DATA		Capacity Method: (None)
NUMERICAL Set (mm)	DATA 4.2	VMX (m/s)	Capacity Method: (None) 0.00
NUMERICAL Set (mm) Rebound (mm)	4.2 -22.8	VMOX (m/s) DMX (mm)	Capacity Method: (None) 0.00 -18.6

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
1	4.2	-22.8		8.604

Average	4.2	-22.8	0.00
Max Variation	0.0	0.0	-1998.00

PDM REPORT

Project Name 12 Project Description 192 Test Date Pile Number 30/11/2018 4-EOD-2

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 4 of 8

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	08:06:23	22.102	2.4	3.7	6.78	6.1
2	08:06:24	22.112	9.2	8.2	2.836	17.4
3	08:06:24	22.112	0.7	6	4.78	6.7
4	08:06:24	22.118	5.3	2.6	3.153	7.9
5	08:06:25	22.119	1	1.3	3.44	2.3
6	08:06:25	22.114	-4.3	6.3	2.977	2
7	08:06:25	22.118	3.6	2	2.659	5.6
8	08:06:26	22.119	0.6	1.4	2.793	2.1
9	08:06:26	22.118	-0.5	1.6	2.473	1.1
10	08:06:26	22.119	0.7	1.3	2.38	2
11	08:06:26	22.119	0.3	0.5	2.304	0.8
12	08:06:27	22.119	-0.4	0.9	2.423	0.5
13	08:06:27	22.119	-0.1	1	2.677	0.9
14	08:06:27	22.119	0	1.1	2.762	1.1
15	08:06:28	22.119	0	0.9	2.6	0.9
16	08:06:28	22.119	0.1	1.6	2.728	1.7
17	08:06:28	22.118	-0.4	1.5	2.59	1.1
18	08:06:29	22.119	0.4	0.9	2.654	1.3
19	08:06:29	22.119	0	1	2.705	1
20	08:06:29	22.118	-0.2	1.2	3.118	1
21	08:06:30	22.118	0	1.2	3.343	1.2
22	08:06:30	22.119	0.2	1.4	3.13	1.6
23	08:06:30	22.119	-0.1	1.3	2.709	1.2
24	08:06:31	22.119	0.1	1.1	2.47	1.2
25	08:06:31	22.119	-0.1	0.9	2.423	0.8
26	08:06:31	22.119	0.1	1.6	2.415	1.7
27	08:06:32	22.118	-0.6	1.9	2.669	1.3
28	08:06:32	22.118	0.2	1.4	2.68	1.5
29	08:06:32	22.119	0.3	1.5	2.673	1.8
30	08:06:33	22.118	-0.3	1.7	2.567	1.4
31	08:06:33	22.119	0.5	0.8	2.966	1.3
32	08:06:33	22.118	-0.4	1.3	3.328	1
33	08:06:34	22.119	0.1	1.3	3.1	1.3
34	08:06:39	22.119	0	1.5	3.061	1.5
35	08:06:39	22.118	-0.1	1.4	2.773	1.3
36	08:06:40	22.119	0.4	0.8	2.956	1.2
37	08:06:40	22.118	-0.6	1.4	2.679	0.8
38	08:06:40	22.119	0.9	0.7	2.673	1.6

39	08:06:41	22.119	-0.5	1.6	2.744	1.1
40	08:06:41	22.119	0.2	0.8	2.96	1
41	08:06:41	22.118	-0.4	2.1	3.115	1.7
42	08:06:42	22.119	0.9	0.2	3.306	1.1
43	08:06:42	22.119	-0.2	0.6	3.078	0.4
44	08:06:42	22.118	-1.5	2	2.837	0.5

PDM REPORT Stable Reference Monitoring

Company Name		Report Date	25/4/2019
Client Name		Report Time	4:13:09 PM
Project Name	12	Test Date	30/11/2018
Project Area	192	Test Time	8:05:29 AM
Supervisor		Superintendent	
Pile Number	1-EOD	PDM Pile Offset (m)	-1.000
Pile Type		Final Penetration at Blow 10 (m)	22.119
Hammer		Stroke (m)	0.000

PDM REPOR	Т		
Project Name	12	Test Date	30/11/2018
Project Area	192	Pile Number	1-EOD
NUMERICAL	DATA		Capacity Method: (None)
NUMERICAL Set (mm)	DATA 1.9	VMX (m/s)	Cepacity Method: (None) 2.79
NUMERICAL Set (mm) Rebourd (mm)	DATA 1.9 3.4	VMX (m/s) DMX (mm)	Capacity Method: (None) 2.79 5.3

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
10	0.7	1.3	2.38	22.119
9	-0.5	1.6	2.47	22.118
8	0.6	1.4	2.79	22.119
7	3.6	2.0	2.66	22.118
6	-4.3	6.3	2.98	22.114
5	1.0	1.3	3.44	22.119
4	5.3	2.6	-	22.118
3	0.7	6.0		22.112
2	9.2	8.2		22.112
1	2.4	3.7		22.102
Average	1.9	3.4	2.79	
Max Variation	13.6	6.9	1.06	

PDM REPORT

 Project Name
 12
 Test Date
 30/11/2018

 Project Description
 192
 Pile Number
 1-EOD

COMPLETE VIEW

00	.08	 	and the second se	
	6			
	4			
	2			
	2			
	8			
	6			
22	4			
9	2			
	9			
	8			
14	16			
	14			
	12			
1	8			
	18			
	76			
	4			
	2			
	7			
w				
	u			
	ũ l			
	20			
A 2 5 5 8 6 4 4 4 4 4 4 4 4 4 4 4 4 4	0			
5 6 4 4 2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6	2			
	5			
	10			
	16			
	14			
	12			
8	4			
8	8			
4	36			
	14			

PDM Serial Number: PG2024174

Test 5 of 8

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	08:20:36	23.587	-12.5	1	2.413	-11.6
2	08:20:37	23.587	-0.3	2	2.385	1.7
3	08:20:38	23.587	-0.2	1.6	2.54	1.4
4	08:20:39	23.587	-0.3	2.3	2.588	2

M REPORT	Stable Reference Monitoring									
npany Name	Report Date						25/4/2019			
nt Name					Report 1	lime		4.11	-02 PM	
oct Name	12				Test Dat	10 No.		30/4	1/2018	
oct Area	102				Test Tim	~		0.20	1/2010	
ervisor	182				Superint	endent		0.20	.30 AM	
					ouperin					
Number	2-EOD				PDM Pi	e Offset (m)		-1.0	00	
Type					Final Pe	netration at Bi	ow 4 (m)	23.5	87	
nmer					Stroke (i	m)		1.00	0	
		1			ļ					
00										
00										
00					1					
00										
00					1					
00										
00										
00					1					
00										
00		1								
00										
00										
00					1					
00										
00										
00										
00										
0										
00										
00										
00					1					
00										
00										
00										
00										
00										
00										
00										
00										
00										
00										
00										
11.6	Now#1 -12.5	1.7	Blow #2	-0.3	1.4	Blow #3	-0.2	2.0	Blow #4	-0.3

PDM REPOR	т		
Project Name Project Area	12 192	Test Dote Pile Number	30/11/2018 2-EOD
NUMERICAL	DATA		Capacity Method: (None)
Set (mm)	-3.3	VMX (m/s)	0.00
Rebound (mm)	1.7	DMX (mm)	-1.6
Capacity (kN)		EMX (kJ)	

TABLE VIEW

Blow	Set (mm)	Robound (mm)	VMX (m/s)	Penetration (m)
4	-0.3	2.3		23.587
3	-0.2	1.6		23.587
2	-0.3	2.0		23.587
1	-12.5	1.0	-	23.587

Average	-3.3	1.7	0.00
Max Variation	12.4	1.4	-1998.00

PDM REPORT

Project Name 12 Project Description 192 Test Date Pile Number 30/11/2018 2-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 6 of 8

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	08:23:28	25.1	0.4	-0.1	0.633	0.2
2	08:23:28	25.102	1.2	3.6	4.588	4.8
3	08:23:28	25.106	4.3	5.7	7.947	10
4	08:23:29	25.105	-0.7	3.4	5.78	2.7
5	08:23:29	25.104	-0.9	6.8	6.927	5.9
6	08:23:29	25.104	0	1.1	4.916	1.1
7	08:23:30	25.104	-0.2	1.3	3.711	1
8	08:23:30	25.108	4.3	5.6	3.61	10
9	08:23:30	25.109	0.2	2.7	3.825	2.9
10	08:23:31	25.109	0.5	1	3.913	1.4
11	08:23:31	25.116	6.5	0.6	2.776	7.1
12	08:23:31	25.111	-4.9	5.1	2.965	0.2
13	08:23:32	25.114	3.4	2.3	3.225	5.7

ompany Name					Report Date			25/4/2019	
lient Name					Report Time			4:09:59 PM	
roject Name	12				Test Date			30/11/2018	
hoject Area	192				Test Time			8:22:45 AM	
Jupervisor					Superintend	lent			
Number	2-EOD-	-2			PDM Pile O	ffset (m)		-1.000	
lammer					Final Penetr Stroke (m)	ation at Bio	w 10 (m)	25.109 1.000	
m mm 088				ļ	ļ		10.0		ļ
087		10.0			1				
1.085				5.9	1			2.9	14
5.084			27		1		1		
5 082									
5.081									
5.08	4.8				1.1	1.0	1		
5.078							1 1		
5.077							+		
5.075 0.2		1		9-11-				1	
.074								nin hikata	i Pohtebug
5.073			in Illi					0.3	2 0.5
5.071			THE T	10,00			44	- la la la	LL I.W.
25.07			-0.	7 -0.5					
0.069	1	1.14.0	ألد الما م	() where the	0.0		2 4	1.3	
5.067		di di data	an hilds.	11. 1.1	and a state	- 1.1	127		
5.066	- Manda	4.3	-						
0.4	1.1	2							
5.064									
5.062									
5.061									
5.069					1				
5.068									
5.057									
6.066									
	Blau #2	Blow #1	Blow #4	Blow #5	Blow #6	Blow #7	Blow #	Binw #9	Blaw #10

PDM REPOR	Т		
Project Name Project Area	12 192	Test Date Pile Number	30/11/2018 2-EOD-2
NUMERICAL	DATA		Capacity Method: (None)
Set (mm)	0.9	VMX (m/s)	4.48
Set (mm) Rebound (mm)	0.9 3.1	VMX (m/s) DMX (mm)	4.48 4.0

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
10	0.5	1.0	3.91	25.109
9	0.2	2.7	3.83	25.109
8	4.3	5.6	3.61	25.108
7	-0.2	1.3	3.71	25.104
6	0.0	1.1	4.92	25.104
5	-0.9	6.8	6.93	25.104
4	-0.7	3.4	-	25.105
3	4.3	5.7	-	25.106
2	1.2	3.6	-	25.102
1	0.4	-0.1	-	25.100
Average	0.9	3.1	4.48	
Max Variation	5.2	6.9	3.32	

PDM REPORT

Project Name 12 Project Description 192 Test Date Pile Number 30/11/2018 2-EOD-2

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 7 of 8

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	08:27:59	26.704	4.1	-3	4.423	1.1
2	08:28:00	26.704	0.2	1.5	4.629	1.7
3	08:28:03	26.718	14.1	0.9	3.571	15
4	08:28:04	26.718	0	0.9	1.972	0.9
5	08:28:05	26.718	-0.2	1.8	2.72	1.6
6	08:28:07	26.719	0.4	0.7	2.335	1
7	08:28:08	26.718	-0.6	1.5	2.373	0.9
8	08:28:09	26.719	0.8	1.3	2.266	2.1
9	08:28:11	26.719	0	1.2	2.24	1.2

PDM REPORT Stable Reference Monitoring

Company Name		Report Date	25/4/2019
Client Name		Report Time	4:06:51 PM
Project Name	12	Test Date	30/11/2018
Project Area	192	Test Time	8:27:00 AM
Supervisor		Superintendent	
Pile Number	2-EOD-3	PDM Pile Offset (m)	-1.000
Pile Type		Final Penetration at Blow 9 (m)	26.719
Hammer		Stroke (m)	1.000

2		15.0	0.9	1.0	1.0	0.9	6.1	1.2
1				+	+	+		
						+		
7					+			
5						+		
5						+		
4				+		+		
3				+	1	+		
2		Ol ul coult	and the second	stoctoriac	in a sub-	(militatoria)	<u>idealeusen</u>	in tha wat
1		- BALLAKUL	0.0	.0.	2 0.4	4 -Q.	0.0	
7		la la const	4.11.41	a ti tild i sara	the state of the second state	STATISTICS.	a di sali sa di ta	Contractory of
•	1.7	- nichtler zht	a like in a set of a	11.1.1.0.	1.1.11			
3			1		1	1		
7					1			****
5	Č.		1	1	1	1		
5			1	1	1	1		
1.1	1							+
3			1	1	1	1		1
2								
1	1			1	1	1	1	
				1	1	1		
		1		1	1	1	1	1
3	La marking stal				1	1		
	0.2	14.1						
	20 march 100							
the task atta				1	1	1	1	1
4.								
المرجلة فعاليه الرأ					1	1		
				1	1	1		1
	1							
				1	1	1		
			1	1	1	1		
				1	1			
Blow #1	Blow #2	Blow #3	Blow #4	Blow #E	Blow #5	Blow #7	Blow #9	Blass #
DIOW #1	BIOW #2	BIOW #3	DIGW #4	DIOW #5	DIGR #0	DIOW #/	DIOW #8	DOW #

PDM REPORT

Project Name Project Area	12 192	Test Date Pile Number	30/11/2018 2-EOD-3
NUMERICAL	DATA		Capacity Method: (None)
Set (mm)	2.1	VMX (m/s)	2.39
Rebound (mm)	0.8	DMX (mm)	2.8
Capacity (kN)		EMX (kJ)	-

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
9	0.0	1.2	2.24	26.719
8	0.8	1.3	2.27	26.719
7	-0.6	1.5	2.37	26.718
6	0.4	0.7	2.33	26.719
5	-0.2	1.8	2.72	26.718
4	0.0	0.9	-	26.718
3	14.1	0.9	-	26.718
2	0.2	1.5	-	26.704
1	4.1	-3.0		26.704
Average	2.1	0.8	2.39	
Max Variation	14.7	4.8	0.48	

Test 8 of 8

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	08:35:50	29.713	12.6	-2.2	8.983	10.4
2	08:35:50	29.707	-5.6	1.3	2.305	-4.4
3	08:35:51	29.716	8.9	-7.6	2.188	1.4
4	08:35:51	29.716	0	1.9	2.961	1.9
5	08:35:51	29.716	0.5	0.8	2.581	1.4
6	08:35:52	29.716	0.1	1	2.685	1
7	08:35:52	29.716	0	1.2	2.483	1.2
8	08:35:52	29.716	-0.5	2.1	2.35	1.6
9	08:35:53	29.716	0.1	1.5	2.238	1.6
10	08:35:53	29.716	-0.2	1.7	2.283	1.5
11	08:35:53	29.716	0.1	1.3	2.444	1.4
12	08:35:54	29.716	-0.2	1.5	2.526	1.3
13	08:35:54	29.716	-0.1	1.5	2.596	1.4
14	08:35:54	29.716	-0.1	2.6	2.474	2.6
15	08:35:55	29.716	0.2	1.8	2.596	2
16	08:35:55	29.716	-0.1	1.2	2.382	1.2
17	08:35:56	29.715	-0.3	1.8	2.516	1.5
18	08:35:57	29.716	0.4	1.4	2.322	1.8
19	08:36:03	29.716	0	1.5	2.383	1.5
20	08:36:03	29.716	-0.1	1.6	2.365	1.4
21	08:36:03	29.716	0.6	1.2	2.436	1.9
22	08:36:04	29.716	-0.4	1.2	2.568	0.8
23	08:36:04	29.717	0.7	0.8	2.429	1.5
24	08:36:04	29.716	-1	2.1	2.44	1.2

PDM REPORT Stable Reference Monitoring Company Name Report Date 25/4/2019 Client Name Report Time 4:05:10 PM Project Name Test Date 30/11/2018 12 Project Area Test Time 192 8:35:24 AM Superintendent Supervisor Pile Number 2-EOD-5 PDM Pile Offset (m) -1.000 Pile Type Final Penetration at Blow 10 (m) 29.716 Stroke (m) Hammer 1.000 mimm 1.6 1.9 1.2 1.0 1.6 1.5 1.4 29.694 29.693 29.692 29.691 29.69 29.689 29.688 10.4 29.687 29.686 1.4 -4.4 29.685 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.2 29.684 29.683 فرقلا متشديها فن أشارته غاف الأولاق علمان الله المتعربين ابتراب مراه متعالد عن 29.682 29.681 29.68 -5.6 29.679 29.678 29.677 29.676 29.675 alt, Like Lhis 29.674 8.9 29.673 فلنقدل وأبتحط 29.672 29.671 29.67 29.669 29.668 29.667 12.6 29.666 29.665 29.664 29.663 29.662 29.661 29.66 29.659 29.658 29.657 29.656 Blow #1 Blow #2 Blow #3 Blow #4 Blow #5 Blow #6 Blow #7 Blow #8 Blow #9 Blow #10 29.655

Blows

PDM REPOR	Т		
Project Name	12	Test Date	30/11/2018
Project Area	192	Pile Number	2-EOD-5
NUMERICAL	DATA		Capacity Method: (None)
NUMERICAL Set (mm)	DATA 1.6	VMX (m/s)	Capacity Method: (None) 2.44
NUMERICAL Set (mm) Rebound (mm)	DATA 1.6 0.2	VMX (m/s) DMX (mm)	Capacity Method: (None) 2.44 1.8

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
10	-0.2	1.7	2.28	29.716
9	0.1	1.5	2.24	29.716
8	-0.5	2.1	2.35	29.716
7	0.0	1.2	2.48	29.716
6	0.1	1.0	2.69	29.716
5	0.5	0.8	2.58	29.716
4	0.0	1.9		29.716
3	8.9	-7.6	-	29.716
2	-5.6	1.3		29.707
1	12.6	-2.2		29.713
Average	1.6	0.2	2.44	
Max Variation	18.3	9.7	0.45	

PDM REPORT

Project Name 12 Project Description 192 Test Date Pile Number 30/11/2018 2-EOD-5

COMPLETE VIEW

PDM Serial Number: PG2024174

A.2.4 Dunns Creek Two Tests

A.2.4.1 Pile 10, Pier 4, near Station 436+37

Test 1 of 2

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	09:16:22	14.526	26.2	4.8	6.727	31

PDM REPORT Stable Reference Monitoring

Company Name Client Name Project Name Project Area Supervisor	Jacksonville A1		Report Date Report Time Test Date Test Time Superintendent	25/4/2019 4:25:19 PM 19/9/2018 9:16:21 AM
Pile Number Pile Type Hammer	1-EOD		POM Pile Offset (m) Final Penetration at Blow 1 Stroke (m)	-1.000 (m) 14.526 1.000
m mm 1	31.0			
4.538				
536				
534				
532				
4.53	9 .m			
.528	1 M			
526		And Street Street	in all the sene of	and the price of the price of the second
.524		the exclution of	and particular to be	U MANUNA ILANA AUNITALA
522				
4.62				
.518				
1.518				
L.518 L.516 L.514	1			
L 518 L 516 L 514 L 512	1			
1.518 1.516 1.514 1.512 (4.51	1			
.518 .516 .514 .512 4.51 .608				
.518 .516 .514 .512 .508 .506				
4.518 4.516 4.514 4.512 4.51 4.51 4.500 4.506 4.506				
.518 .516 .514 .512 .506 .506 .506 .504				
.518 .516 .514 .512 .506 .506 .506 .504 .502 14.5				26.2
.518 .516 .514 .512 .506 .506 .506 .504 .502 .502 .4.51 .502 .504 .502				26.2
1.518 1.516 1.514 1.512 1.506 1.506 1.504 1.502 14.5 1.496	M			26.2
1.518 1.516 1.514 1.512 1.506 1.506 1.504 1.505 1.4.50 1.4.50 1.4.96 1.496				26.2
4.516 4.514 4.514 4.512 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.506 4.514 4.51 4.51 4.51 4.51 4.51 4.51 4.5				26.2
1.518 1.514 1.514 1.512 1.506 1.506 1.504 1.502 1.456 1.496 1.496 1.496 1.496				26.2

PDM REPOR	रा		To al Date	
Project Name Project Area	Jacksonville A1		Pile Number	19/9/2018 1-EOD
NUMERICAL	DATA			Capacity Method: (Non
Sot (mm)	26.2		VMX (m/s)	0.00
Rebound (mm)	4.8		DMX (mm)	31.0
TABLE VIEW	/			
Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
1	26.2	4.8	-	14.526
Average	28.2	4.9	0.00	
Average	26.2	4.8	0.00	
Max Variation	0.0	0.0	-1998.00	

PDM REPORT

Project Name	Jacksonville	Test Date	19/9/2018
Project Description	A1	Pile Number	1-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Test 2 of 2

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	10:02:53	20.602	2.5	31.6	1.712	34.1
2	10:02:54	20.604	1.9	31.4	1.758	33.3
3	10:02:56	20.607	2.5	31.4	1.667	33.9
4	10:02:57	20.609	2.5	31.5	1.789	34
5	10:02:59	20.612	3.1	31.6	1.738	34.6
6	10:03:00	20.615	2.5	31.2	1.804	33.8
7	10:03:02	20.617	2.3	31.3	1.779	33.6
8	10:03:03	20.62	2.6	30.9	1.774	33.6
9	10:03:05	20.623	3.1	34.5	2.033	37.5
10	10:03:06	20.634	10.9	25.7	2.365	36.7
11	10:03:08	20.635	1.6	26.3	2.257	27.9
12	10:03:09	20.637	1.5	26.7	1.864	28.3
13	10:03:11	20.639	2.3	27.7	1.464	30
14	10:03:14	20.641	1.8	28.2	1.492	30
15	10:03:15	20.643	2	28.4	1.5	30.4
16	10:03:15	20.645	2.2	29.2	1.537	31.5
17	10:03:16	20.647	2	29.7	1.57	31.7
18	10:03:18	20.65	2.4	29.8	1.594	32.2
19	10:03:19	20.652	2	30.1	1.59	32.2
20	10:03:21	20.654	2.3	30.3	1.611	32.5
21	10:03:22	20.657	3	30.6	1.625	33.6
22	10:03:24	20.66	3.1	30.6	1.672	33.7
23	10:03:25	20.663	2.2	30.9	1.692	33.1
24	10:03:27	20.665	2	30.6	1.733	32.7
25	10:03:28	20.667	2	30.7	1.682	32.8
26	10:03:30	20.668	1.7	30.7	1.646	32.4
27	10:03:31	20.671	2.2	30.8	1.616	33
28	10:03:35	20.674	3.3	31	1.677	34.3
29	10:03:35	20.676	2.6	31.2	1.707	33.8
30	10:03:36	20.679	2.7	31.1	1.75	33.8
31	10:03:37	20.682	2.7	31.1	1.718	33.7
32	10:03:39	20.685	2.9	30.9	1.718	33.9
33	10:03:40	20.687	2.6	30.8	1.73	33.4
34	10:03:41	20.69	2.7	31.1	1.724	33.8
35	10:03:43	20.692	2.3	30.9	1.73	33.2
36	10:03:44	20.695	2.4	31	1.724	33.4
37	10:03:46	20.698	3.3	30.9	1.776	34.1
38	10:03:47	20.701	3.3	30.9	1.806	34.3

					•	
39	10:03:49	20.703	2.1	30.7	1.776	32.8
40	10:03:50	20.706	2.4	30.6	1.724	32.9
41	10:03:52	20.708	2.1	30.2	1.666	32.3
42	10:03:55	20.711	2.7	30.3	1.672	33
43	10:03:55	20.713	2.7	30.1	1.695	32.8
44	10:03:56	20.716	2.5	29.5	1.695	32
45	10:03:58	20.719	3.5	29	1.683	32.5
46	10:03:59	20.722	3	32.4	1.881	35.4
47	10:04:01	20.725	3.3	32.2	2.371	35.4
48	10:04:02	20.728	2.2	32.1	2.604	34.3
49	10:04:04	20.733	5.6	29.2	2.901	34.8
50	10:04:05	20.736	2.5	29.7	2.424	32.2
51	10:04:07	20.738	2.4	30.9	2.183	33.3
52	10:04:08	20.741	3.2	30.9	1.687	34
53	10:04:10	20.744	3	30.9	1.733	33.9
54	10:04:11	20.747	2.9	31.2	1.738	34.1
55	10:04:15	20.75	2.8	31.3	1.712	34.1
56	10:04:15	20.753	2.7	31	1.677	33.7
57	10:04:16	20.755	2.4	31.4	1.697	33.8
58	10:04:17	20.758	2.8	31.5	1.717	34.3
59	10:04:19	20.76	2.5	31.2	1.682	33.7
60	10:04:20	20.763	2.2	31.3	1.631	33.5
61	10:04:22	20.765	2.8	31.3	1.641	34.1
62	10:04:23	20.768	2.6	31.3	1.702	33.9
63	10:04:24	20.77	2.5	31.1	1.763	33.5
64	10:04:26	20.774	3.2	31.4	1.784	34.6
65	10:04:27	20.776	2.2	30.9	1.779	33.2
66	10:04:29	20.778	2.1	31.4	1.774	33.6
67	10:04:30	20.78	2.1	30.8	1.712	32.9
68	10:04:32	20.782	2.1	30.8	1.707	32.8
69	10:04:35	20.785	2.6	31.2	1.692	33.8
70	10:04:35	20.787	2.6	31	1.712	33.5
71	10:04:36	20.789	2.2	30.9	1.733	33
72	10:04:38	20.792	2.9	31.1	1.743	34.1
73	10:04:39	20.795	2.7	30.9	1.728	33.6
74	10:04:41	20.798	2.6	30.7	1.682	33.3
75	10:04:42	20.8	2.1	30.6	1.682	32.7
76	10:04:44	20.802	2	30.2	1.677	32.2
77	10:04:45	20.804	2.5	29.8	1.687	32.3
78	10:04:47	20.807	2.7	29.8	1.672	32.4

•				•	•	•
79	10:04:48	20.809	2.3	29.4	1.728	31.7
80	10:04:50	20.811	2.1	28.8	1.728	30.9
81	10:04:51	20.814	2.4	28.6	1.774	31
82	10:04:54	20.816	2.3	28.1	1.733	30.4
83	10:04:55	20.818	2.3	27.4	1.717	29.7
84	10:04:55	20.821	2.6	26.5	1.667	29.1
85	10:04:57	20.83	8.9	27.9	2.655	36.8
86	10:04:58	20.832	2.4	28.1	2.589	30.5
87	10:05:00	20.835	2.4	28.5	2.547	30.9
88	10:05:01	20.836	1.2	28.7	1.488	30
89	10:05:03	20.837	1.4	28.9	1.513	30.3
90	10:05:04	20.839	1.7	29	1.5	30.7
91	10:05:06	20.841	2.5	29.3	1.5	31.8
92	10:05:07	20.844	2.8	29.7	1.537	32.5
93	10:05:09	20.847	3	29.9	1.601	32.9
94	10:05:10	20.849	2.1	29.9	1.651	32.1
95	10:05:12	20.851	2	30.2	1.667	32.2
96	10:05:15	20.854	2.8	30.5	1.656	33.3
97	10:05:15	20.858	3.4	30.6	1.675	34
98	10:05:16	20.86	2.5	30.7	1.668	33.1
99	10:05:18	20.862	2.3	30.7	1.654	32.9
100	10:05:19	20.865	2.4	30.4	1.648	32.7
101	10:05:21	20.867	2.1	30.6	1.637	32.7
102	10:05:22	20.869	2.1	30.6	1.625	32.6
103	10:05:23	20.871	2	30.5	1.637	32.5
104	10:05:25	20.873	2.5	30.7	1.672	33.2
105	10:05:26	20.876	2.6	30.6	1.736	33.2
106	10:05:28	20.879	3.3	30.6	1.759	33.9
107	10:05:29	20.882	2.4	30.9	1.712	33.2
108	10:05:31	20.884	2.7	30.7	1.712	33.4
109	10:05:34	20.886	1.9	30.4	1.736	32.3
110	10:05:35	20.889	2.5	30.6	1.8	33.1
111	10:05:35	20.892	3.1	30.4	1.782	33.5
112	10:05:37	20.894	2.4	30.3	1.788	32.6
113	10:05:38	20.897	2.7	30.4	1.765	33.1
114	10:05:40	20.9	2.9	30	1.771	32.9
115	10:05:41	20.902	2.3	29.8	1.742	32.1
116	10:05:43	20.905	2.7	29.4	1.771	32.1
117	10:05:44	20.907	2.7	29.2	1.788	31.9
118	10:05:46	20.91	2.5	28.4	1.8	30.9

119	10:05:47	20.913	2.9	27.5	1.782	30.4
120	10:05:49	20.915	2.6	27.1	1.771	29.6
121	10:05:50	20.918	2.6	26.4	1.736	29
122	10:05:52	20.92	2.3	25.6	1.689	27.8
123	10:05:55	20.923	2.7	25	1.596	27.7
124	10:05:55	20.925	2.5	23.6	1.578	26.1
125	10:05:56	20.927	1.8	22.4	1.625	24.3
126	10:05:58	20.93	2.4	21	1.718	23.4
127	10:05:59	20.932	2	20.6	1.681	22.6
128	10:06:00	20.933	1.7	20.1	1.552	21.8
129	10:06:02	20.936	2.4	19.5	1.498	21.9
130	10:06:03	20.938	2.3	19.1	1.468	21.4
131	10:06:05	20.94	1.6	19.3	1.568	20.8

DM REPORT Stable Reference Monitoring										
pany Name				Report Da	te	25/4/2019				
ent Name	Jacksonville				Report Tin	ne	4	4:24:04 PM		
oject Name					Test Date		19	9/9/2018		
oject Area	A1				Test Time		10	0:02:52 AM		
pervisor					Superinter	ndent				
e Number	2-EOD-2				PDM Pile	Offset (m)	9	150		
е Туре					Final Pene	stration at Blow	/131 (m) 2(0.940		
mmer					Stroke (m)		1.	000		
n mm										
77					22.6	21.8	21.9	21.4	20.6	
76							9	1		
75							+	2.23	-	
74					2	.0 1.	7 2.4			
73							1			
72							1			
71										
0.7										
09							1			
60							1			
0/							1			
66										
64										
63										
62							+			
61										
0.6										
59							1			
58										
57							1			
50										
54										
53							1			
52										
51										
0.5										
49										
48										
47			4.0	34.6						
34.1	33.3 33	.9					1			
10			1				1			
13							1			
42	1		1000	100	4					
41 2.5	1.9	2.5	2.0							
Blow #1	Blow #2	Blow #3	Blow #4	-Blow #5	-Blow#12	7 Blow #128	Blow #129	-Blow #130	-Blow #13	

PDM REPORT				
Project Name	Jacksonville	Test Date	19/9/2018	
Project Area	A1	Pile Number	2-EOD-2	
NUMERICAL	DATA		Capacity Method: (None)	
NUMERICAL Set (mm)	2.2	VMX (m/s)	Capacity Method: (None) 1.58	
NUMERICAL Set (mm) Rebound (mm)	2.2 25.6	VMX (m/s) DMX (mm)	Capacity Method: (None) 1.58 27.8	

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
131	1.6	19.3	1.57	20.940
130	2.3	19.1	1.47	20.938
129	2.4	19.5	1.50	20.936
128	1.7	20.1	1.55	20.933
127	2.0	20.6	1.68	20.932
5	3.1	31.6	1.74	20.612
4	2.5	31.5		20.609
3	2.5	31.4	-	20.607
2	1.9	31.4		20.604
1	2.5	31.6		20.602
Average	2.2	25.6	1.58	
Max Variation	1.5	12.5	0.27	

PDM REPORT

Project Name	Jacksonville	Test Date	19/9/2018
Project Description	A1	Pile Number	2-EOD-2

COMPLETE VIEW

PDM Serial Number: PG2024174

PDM REPORT Stable Reference Monitoring

Company Name Client Name Project Name Project Area Supervisor	Dunns Creek SPT	Report Date Report Time Test Date Test Time Superintendent	18/4/2019 3:48:04 PM 14/3/2019 11:02:37 AM
Pile Number	2-EOD	PDM Pile Offset (m)	8.200
Pile Type		Final Ponstration at Blow 7 (m)	11.016
Hammer		Stroke (m)	1.000

PDM REPOR	т		
Project Name	Dunns Creek SPT	Test Date	14/3/2019
Project Area		Pile Number	2-EOD
NUMERICAL	DATA		
Set (mm)	169.9	VMX (m/s)	23.58
Rebound (mm)	-70.2	DMX (mm)	99.7

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
7	147.5	-38.2	23.23	11.016
6	192.2	-102.2	23.94	10.869

Average	169.9	-70.2	23.58
Max Variation	44.7	64.0	0.72

PDM REPORT

Project Name	Dunns Creek SPT	Test Date	14/3/2019
Project Description		Pile Number	2-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	11:02:40	10.668	-0.1	8.1	2.327	8
2	11:02:42	10.676	8.1	189.8	75.328	197.9
3	11:02:42	10.679	2.6	186.3	63.035	188.9
4	11:02:47	10.668	-10.2	18.4	5.466	8.3
5	11:02:50	10.677	8.2	189.7	43.798	198
6	11:06:13	10.869	192.2	-102.2	23.942	90
7	11:06:15	11.016	147.5	-38.2	23.225	109.3
8	11:06:16	10.858	-158.8	162	4.299	3.2
9	11:06:17	10.858	0.1	7.2	10.091	7.3
10	11:06:18	10.856	-1.6	9.7	15.505	8.2
11	11:06:18	10.855	-0.9	11.1	20.221	10.2
12	11:06:19	10.852	-2.8	12.1	20.338	9.3

Company Name				Re	sport Date		10/4/2	019	
client Name				R	aport Time		1:16:0	7 PM	
Project Name	Dunr	ns Creek SPT		Te	et Date		14/3/2	019	
Project Area				Те	st Time		11:33	38 AM	
Supervisor				St	perintendent				
ile Number	3-EC	D		PL	M Pile Offset (m	0	8.200		
пе туре				FI	nai Penetration a	C BIOW 6 (m)	12.40	4	
sammer				30	ioke (m)		1.000		
mlmm									
2.42			1					55.2	
2.41								- Constanting	-
12.4									
2.39									
2.38									
2.3/									
2.35						65.8			67.4
2.34									
2.33									
2.32									
2.31									
12.3									
2.29				4	2.4				
2.28							/6./		
2.28									
2.25									
2.24			38.1						
2.23			-		45.	.6			
2.22									
2.21		36.5							
12.2				38.5		1			
2.19									
2.18									
2 16 73.0		17	0						
2.15	-	31.							
2.14									
2.13									
2.12									
2.11									
12.1									
2.09	78.0								
2.00	78.6	El aver de la			Daniel	Free		Filmer #F	

PDM REPORT					
Project Name	Dunns Creek SPT	Test Date	14/3/2019		
Project Area		Pile Number	3-EOD		
NUMERICAL DATA					
Set (mm)	55.7	VMX (m/s)	3.14		
Rebound (mm)	-3.8	DMX (mm)	51.8		

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
6	57.4	-2.2	3.21	12.404
5	76.7	-10.9	3.07	12.347
4	45.6	-3.2	-	12.270
3	38.5	-0.5	-	12.224
2	37.0	-0.6	-	12.186
1	78.6	-5.6	-	12.149

Average	55.7	-3.8	3.14
Max Variation	41.6	10.5	0.14

PDM REPORT

Project Name Dunns Creek SPT Project Description Test Date Pile Number 14/3/2019 3-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	11:34:00	12.149	78.6	-5.6	3.677	73
2	11:34:01	12.186	37	-0.6	3.117	36.5
3	11:34:01	12.224	38.5	-0.5	2.854	38.1
4	11:34:02	12.27	45.6	-3.2	3.084	42.4
5	11:34:03	12.347	76.7	-10.9	3.073	65.8
6	11:34:05	12.404	57.4	-2.2	3.209	55.2
7	11:34:06	12.243	-160.6	162	3.6	1.4
8	11:34:07	12.246	2.6	8.7	9.666	11.3

Page 1 of 3

Blow #7

Blow #6

Blow #4

Blows

Blow #5

Blow #1

15.08

Blow #2

Blow #3

PDM REPORT					
Project Name	Dunns Creek SPT	Test Date	14/3/2019		
Project Area		Pile Number	4-EOD		
NUMERICAL D	ATA				
Set (mm)	50.0	VMX (m/s)	3.13		
Rebound (mm)	-4.9	DMX (mm)	45.1		

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
7	37.2	-2.0	3.12	15.438
6	45.0	-3.8	3.12	15.401
5	41.3	-3.0	3.14	15.356
4	37.1	-2.1	-	15.315
3	59.9	-5.7	-	15.277
2	69.9	-10.5	-	15.218
1	59.6	-7.4	-	15.148

Average	50.0	-4.9	3.13
Max Variation	32.8	8.6	0.02

PDM REPORT

Project Name	Dunns Creek SPT	Test Date	14/3/2019	
Project Description		Pile Number	4-EOD	

COMPLETE VIEW

								-	1
43									
42									11
.41								_	
5.4								T	
.39									
.38									
37									
30							1		
.30									
34									
33									
6.31									
3.3									
29									
						1			-
20									
27									
5.27 5.26									
5.26 5.26 5.26									
5.20 5.27 5.28 5.25 5.25 5.24									
5.20 5.27 5.28 5.25 5.24 5.23									
20 27 28 25 24 23 22 21						7			
20 27 26 25 24 23 22 21 52						ſ			
5.28 5.26 5.26 5.24 5.23 5.21 5.21 5.2 5.2 10						ſ			
2.20 2.27 2.26 2.25 2.24 2.23 2.21 2.22 2.21 5.2 2.1 5.2 19 19									
2.20 2.27 2.25 2.25 2.24 2.23 2.21 5.2 5.21 5.2 1.19 1.18 1.17						,			
227 227 228 225 224 223 222 221 52 221 52 221 52 21 52 31 52 31 52 31 52 52 31 52 52 31 52 52 52 52 52 52 52 52 53 52 55 52 52 53 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 55 52 52						_			
200 227 226 226 225 224 223 222 221 222 221 222 221 222 221 222 21 222 21 22 52 119 110 110 115						[
227 227 228 225 224 223 221 52 52 21 52 52 21 52 52 10 10 10 10 10 11 11 14									
227 227 228 228 225 224 223 221 52 52 21 52 52 119 118 117 118 117 118 115									
200 227 228 225 225 224 222 221 52 221 52 221 52 221 52 109 108 118 115 115 112									
2.20 2.27 2.26 2.26 2.25 2.24 2.21 5.2 2.21 5.2 5.2 1.19 5.18 5.17 5.16 5.14 5.14 5.14 5.12 5.11									
2.20 2.27 2.26 2.26 2.25 2.24 2.23 2.21 5.22 5.21 5.2 1.19 5.10 5.17 5.11 5.15 5.14 5.15 5.11 5.15 5.14 5.15 5.14 5.15 5.11 5.15 5.14 5.15 5.11 5.15 5.11 5.15 5.14 5.15 5.11 5.15 5									
20 27 28 25 24 23 22 21 52 19 18 17 18 15 14 13 12 11 51 09									

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	12:05:49	15.148	59.6	-7.4	3.084	52.2
2	12:05:51	15.218	69.9	-10.5	3.589	59.4
3	12:05:52	15.277	59.9	-5.7	3.172	54.1
4	12:05:52	15.315	37.1	-2.1	3.128	35.1
5	12:05:54	15.356	41.3	-3	3.143	38.3
6	12:05:55	15.401	45	-3.8	3.121	41.2
7	12:05:56	15.438	37.2	-2	3.121	35.2
8	12:05:58	15.423	-15.6	27.1	10.599	11.6
9	12:05:59	15.29	-132.1	137.7	17.06	5.6
10	12:06:00	15.286	-4.2	9.6	22.717	5.4
11	12:06:01	15.288	1.9	13	19.384	14.9

PDM REPORT Stable Reference Monitoring

Company Name		Report Date Report Time	10/4/2019
Project Name	Dunce Creek SPT	Test Date	1.33.39 FM
Project Area	Dunis Creek SP1	Test Time	12:36:14 PM
Supervisor		Superintendent	
Pile Number	5-EOD	PDM Pile Offset (m)	8.200
Pile Type		Final Penetration at Blow 18 (m)	16.963
Hammer		Stroke (m)	1.000

Blows

PDM REPORT Project Name Dunns Creek SPT Test Date 14/3/2019 Project Area Pile Number 5-EOD NUMERICAL DATA Set (mm) VMX (m/s) 58.3 5.84 Rebound (mm) -7.5 DMX (mm) 50.8

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
18	31.8	-2.7	2.97	16.963
17	49.2	-5.2	3.16	16.931
16	56.4	-7.9	3.23	16.882
15	62.8	-8.1	3.22	16.825
14	71.7	-9.6	9.07	16.762
13	78.0	-11.5	13.41	16.691

Average	58.3	-7.5	5.84
Max Variation	46.2	8.7	10.45

PDM REPORT

Project Name	Dunns Creek SPT	Test Date	14/3/2019
Project Description		Pile Number	5-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	12:37:33	16.81	197.6	7	63.145	204.6
2	12:37:34	16.807	-2.8	12.2	19.834	9.3
3	12:37:35	16.81	3.5	9.2	24.432	12.7
4	12:37:36	16.805	-5.5	12.9	18.088	7.4
5	12:37:36	16.805	0.2	12.5	20.737	12.6
6	12:37:37	16.807	2.1	8.1	18.707	10.2
7	12:37:38	16.807	-0.3	13	18.948	12.7
8	12:37:39	16.809	2.1	9.3	18.996	11.4
9	12:37:40	16.808	-0.8	5.4	18.824	4.6
10	12:37:40	16.809	1.2	6.7	19.259	7.9
11	12:37:41	16.806	-3.5	11.3	18.081	7.8
12	12:37:42	16.613	-193	205.2	19.029	12.3
13	12:37:46	16.691	78	-11.5	13.413	66.5
14	12:37:47	16.762	71.7	-9.6	9.066	62
15	12:37:48	16.825	62.8	-8.1	3.223	54.7
16	12:37:52	16.882	56.4	-7.9	3.227	48.4
17	12:37:52	16.931	49.2	-5.2	3.165	44
18	12:37:52	16.963	31.8	-2.7	2.967	29.1
19	12:37:54	16.805	-157.2	124.5	7.815	-32.7
20	12:37:55	16.806	0.3	9.9	12.728	10.2
21	12:37:56	16.803	-2.5	13.4	18.988	11

PDM REPORT Stable Reference Monitoring

Company Name Client Name		Report Date Report Time	10/4/2019 1:30:48 PM
Project Name Project Area	Dunns Creek SPT	Test Data Test Time	14/3/2019 1:00:24 PM
Supervisor		Superintendent	
Pile Number	6-EOD	PDM Pile Offset (m)	8.200
Pile Type		Final Penetration at Blow 10 (m)	18.485
Hammer		Stroke (m)	1.000

PDM REPORT .						
Project Name Project Area	Dunns Creek SPT	Test Date Pile Number	14/3/2019 6-EOD			
NUMERICAL	DATA					
Set (mm)	34.9	VMX (m/s)	2.84			
Rebound (mm)	-1.0	DMX (mm)	33.9			

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
10	21.4	0.7	2.82	18.485
9	28.8	-0.2	2.79	18.463
8	28.8	0.0	2.73	18.435
7	23.9	0.6	2.70	18.406
6	27.2	0.8	2.92	18.382
5	35.6	-0.9	3.08	18.355
4	40.0	-2.2	-	18.319
3	42.5	-2.2	-	18.279
2	41.1	-2.4	1	18.237
1	59.6	-4.5		18.196
Average	34.9	-1.0	2.84	
Max Variation	38.2	5.3	0.38	

PDM REPORT

Project Name	Dunns Creek SPT	Test Date	14/3/2019
Project Description		Pile Number	6-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	13:00:40	18.196	59.6	-4.5	3.238	55.1
2	13:00:42	18.237	41.1	-2.4	3.666	38.7
3	13:00:43	18.279	42.5	-2.2	3.194	40.3
4	13:00:44	18.319	40	-2.2	3.271	37.8
5	13:00:45	18.355	35.6	-0.9	3.084	34.7
6	13:00:46	18.382	27.2	0.8	2.923	28
7	13:00:48	18.406	23.9	0.6	2.704	24.5
8	13:00:49	18.435	28.8	0	2.733	28.8
9	13:00:50	18.463	28.8	-0.2	2.788	28.6
10	13:00:51	18.485	21.4	0.7	2.821	22.1
11	13:00:53	18.464	-20.7	9.5	11.587	-11.2
12	13:00:54	18.331	-132.8	9.8	16.958	-123.1
13	13:00:55	18.334	2.6	4.9	20.957	7.5
14	13:00:56	18.331	-2.6	13.1	17.854	10.5
15	13:00:57	18.333	1.9	9.5	17.979	11.5

A.2.5 Wekiva Parkway Wildlife Crossings 2 and 3

A.2.5.1 Day 1, 5/7/2019, WLC 2

PDM REPORT Stable Reference Monitoring

Company Name		Report Date	13/5/2019
Client Name		Report Time	4:53:13 PM
Project Name	Wekiva	Test Date	7/5/2019
Project Area		Test Time	1:18:31 PM
Supervisor		Superintendent	
Pile Number	1-EOD	PDM Pile Offset (m)	8.000
Pile Type		Final Penetration at Blow 4 (m)	15.195
Hammer		Stroke (m)	1.000

PDM REPOR	Т		
Project Name Project Area NUMERICAL	Wekiva DATA	Test Date Pile Number	7/5/2019 1-EOD
Set (mm) Rebound (mm)	65.1 -10.3	VMX (m*s) DMX (mm)	0.00 54.8

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
4	27.9	0.1	-	15.195
3	67.5	-8.9	-	15.168
2	76.8	-11.4		15.100
1	88.1	-21.0	-	15.023

Average	65.1	-10.3	0.00
Max Variation	60.3	21.0	-1998.00

PDM REPORT

Project Name	Wekiva	Test Date	7/5/2019
Project Description		Pile Number	1-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	13:18:43	15.023	88.1	-21	3.331	67.2
2	13:18:45	15.1	76.8	-11.4	3.203	65.4
3	13:18:46	15.168	67.5	-8.9	3.256	58.7
4	13:18:48	15.195	27.9	0.1	3.053	27.9
5	13:18:49	15.241	45.8	-19.9	2.992	25.9
6	13:18:53	15.243	1.6	2.3	3.66	3.8
7	13:18:53	15.085	-158	159.9	4.638	1.9
8	13:18:54	15.084	-0.4	9.2	8.991	8.9
9	13:18:54	15.087	2.5	6.6	12.983	9.1
10	13:18:55	15.082	-5.1	13.2	15.807	8.1
11	13:18:55	15.084	2.5	-15076.5	15.807	-15074

PDM REPORT Stable Reference Monitoring

iompany lient Nar roject Na roject Ar uperviso	Name me ame rea x	Wekiva			Repo Repo Test Test Supe	rt Date rt Time Date Time rintendent		13/5/2019 4:57:11 PM 7/5/2019 1:40:11 PM	
ile Numt lle Type lammer	ber	2-RST			PDM Final Strok	Pile Offset (m) Peretration at 8 e (m)	Blow 9 (m)	8.000 17.021 1.000	
m mm									37.6
7.03									21.0
7.02									-
7.01								33.1	
17								-	2
6.99									
6.98							32.3		
6.97								33.6	
6.96									
6.96						28.8			
6.94							32		
0.00						1			
6.91					28.8				
15.9						28.9			
6.89									
6.88				27.9					
6.87				-	28.	9			
6.86								-	
6.85			24.7						
6.84			-	28.	0				
6.83		27.1							
6.82		-	24.4						
6.81									
16.8	27.9								
6.79	-	26.							
6.78	37.0								
6.76	Blow #1	Blow #2	Blow #3	Blow #4	Blow #F	Blow #5	Bion 27	Blow #8	Bion #0

PDM REPOR	т		
Project Name	Wekiva	Test Date	7/5/2019
Project Area		Pile Number	2-RST
NUMERICAL	DATA		
Set (mm)	28.7	VMX (m/s)	3.13
Rebound (mm)	0.0	DMX (mm)	28.7

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
9	27.1	0.3	3.31	17.021
8	33.6	-0.5	3.27	16.994
7	32.8	-0.5	3.10	16.961
6	28.9	-0.1	3.00	16.928
5	28.9	-0.1	2.96	16.899
4	28.0	-0.1	-	16.870
3	24.4	0.3	-	16.842
2	26.7	0.4	-	16.818
1	27.9	0.0		16.791
Average	28.7	0.0	3.13	
Max Variation	9.2	0.9	0.35	

 PDM REPORT
 Test Date
 7/5/2019

 Project Description
 Pile Number
 2-RST

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	13:40:18	16.791	27.9	0	2.903	27.9
2	13:40:19	16.818	26.7	0.4	3.021	27.1
3	13:40:21	16.842	24.4	0.3	2.785	24.7
4	13:40:22	16.87	28	-0.1	2.935	27.9
5	13:40:24	16.899	28.9	-0.1	2.964	28.8
6	13:40:25	16.928	28.9	-0.1	2.999	28.8
7	13:40:26	16.961	32.8	-0.5	3.096	32.3
8	13:40:28	16.994	33.6	-0.5	3.267	33.1
9	13:40:29	17.021	27.1	0.3	3.31	27.5

M REPORT	Stable R	leference I	Monitoring						
mpany Name					Report Date	2	1	3/5/2019	
ant Name					Report Time	e	4	:59:29 PM	
ect Name	Wekiva				Test Date		7	/5/2019	
ect Area					Test Time		2	:02:45 PM	
pervisor					Superintend	jent			
Number	3-EOD				PDM Pile O	Miset (m)	8	.000	
туре					Final Penet	ration at Blow	13 (m) 1	8.270	
nmer					Stroke (m)		1	.000	
1 mm									
28									16.5
27								16.7	-
26									15
25							18.4		-
24								15.	7
23						19.7			
22						-	17.	.7	
21					21.7				
1.2					-	19.	.1		
19									
18					21.	1			
17									
16									
15									
14									
13				24.4					
12				24.4					
11				1					
8.1			24.6		1	1			
09			-	23.	8				
08		24.6							
07			23.7	1	1	1			
06	25.1				1	1			
06		23.0			1	1	1		
04		200							
03 33.8					1	1			
02	24.3								
18					1				
32.8									
Blow #1	Blow #2	Blow #3	Blow #4	Blow #5	Blow #9	Blow #10	Blow #11	Blow #12	Blow #13

Blows

PDM REPORT						
Project Name	Wekiva	Test Date	7/5/2019			
Project Area		Pile Number	3-EOD			
NUMERICAL D	ATA					
Set (mm)	21.7	VMX (m/s)	2.56			
Rebound (mm)	0.8	DMX (mm)	22.6			

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
13	15.5	1.0	2.36	18.270
12	15.7	1.0	2.41	18.254
11	17.7	0.7	2.54	18.238
10	19.1	0.6	2.62	18.221
9	21.1	0.6	2.64	18.201
5	23.8	0.6	2.82	18.110
4	23.7	0.9	-	18.086
3	23.6	1.0	-	18.063
2	24.3	0.8		18.039
1	32.8	1.0	-	18.015
Average	21.7	0.8	2.56	
Max Variation	17.3	0.4	0.46	

PDM REPORT

Project Name	Wekiva	Test Date	7/5/2019
Project Description		Pile Number	3-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Dlaw	StartTime	Penetration	Set (mm)	Rebound	Velocity	DMX (mm)
DIOW	StartTime	(11)	(11111)	(11111)	(111/S)	33.8
1	14:02:51	18.015	32.8	1	3.117	55.0
2	14:02:53	18.039	24.3	0.8	2.699	25.1
3	14:02:54	18.063	23.6	1	2.881	24.6
4	14:02:56	18.086	23.7	0.9	2.764	24.6
5	14:02:57	18.11	23.8	0.6	2.821	24.4
6	14:02:59	18.134	23.9	0.3	2.789	24.1
7	14:03:00	18.158	23.8	0.2	2.742	24
8	14:03:02	18.18	22.5	0.3	2.681	22.8
9	14:03:03	18.201	21.1	0.6	2.635	21.7
10	14:03:07	18.221	19.1	0.6	2.617	19.7
11	14:03:07	18.238	17.7	0.7	2.539	18.4
12	14:03:08	18.254	15.7	1	2.407	16.7
13	14:03:09	18.27	15.5	1	2.357	16.5
14	14:03:11	18.288	18.3	-6.2	2.228	12.1
15	14:03:14	18.294	5.9	2.6	3.87	8.5
16	14:03:15	18.265	-29	32.4	4.902	3.5
17	14:03:16	18.265	-0.2	7	11.883	6.7
18	14:03:17	18.14	-124.5	8.4	15.036	-116.1

PDM REPORT Stable Reference Monitoring

		-	
Company Name		Report Date	13/5/2019
Client Name		Report Time	5:01:17 PM
Project Name	Wekiva	Test Date	7/5/2019
Project Area		Test Time	2:27:15 PM
Supervisor		Superintendent	
Pile Number	4-EOD	PDM Pile Offset (m)	8.000
Pile Type		Final Penetration at Blow 18 (m)	19.799
Hammer		Stroke (m)	1.000

PDM REPORT			
Project Name	Wekiva	Test Date	7/5/2019
Project Area		Pile Number	4-EOD
NUMERICAL DA			
Set (mm)	16.8	VMX (m/s)	2.28
Rebound (mm)	1.1	DMX (mm)	18.0

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
18	10.7	1.8	2.16	19.799
17	11.0	1.7	2.15	19.788
16	11.6	1.4	2.26	19.777
15	12.0	1.3	2.25	19.765
14	12.4	1.2	2.25	19.753
5	18.8	1.2	2.62	19.616
4	19.8	0.8	-	19.598
3	21.2	0.9	-	19.578
2	22.8	0.9		19.557
1	27.8	0.4		19.534
Average	16.8	1.1	2.28	
Max Variation	17.0	1.3	0.47	

PDM REPORT

 Project Name
 Wekiva
 Test Date
 7/5/2019

 Project Description
 Pile Number
 4-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	14:27:23	19.534	27.8	0.4	2.785	28.2
2	14:27:24	19.557	22.8	0.9	2.839	23.7
3	14:27:26	19.578	21.2	0.9	2.806	22.1
4	14:27:27	19.598	19.8	0.8	2.464	20.7
5	14:27:29	19.616	18.8	1.2	2.624	20
6	14:27:30	19.635	18.5	0.8	2.457	19.3
7	14:27:32	19.652	17.5	0.5	2.424	18
8	14:27:33	19.669	16.4	0.7	2.303	17.2
9	14:27:35	19.685	15.7	0.7	2.314	16.4
10	14:27:37	19.699	14.6	1	2.36	15.7
11	14:27:38	19.714	14.5	0.8	2.424	15.2
12	14:27:39	19.728	14.1	0.9	2.417	15
13	14:27:41	19.741	12.9	0.9	2.303	13.8
14	14:27:42	19.753	12.4	1.2	2.253	13.6
15	14:27:44	19.765	12	1.3	2.249	13.3
16	14:27:45	19.777	11.6	1.4	2.264	13
17	14:27:47	19.788	11	1.7	2.153	12.7
18	14:27:48	19.799	10.7	1.8	2.157	12.5
19	14:27:50	19.813	14.6	-5.7	2.06	8.9
20	14:27:53	19.821	7.6	0.6	2.328	8.2

PDM REPORT	Stable R	Reference	Monitoring						
ompany Name					Report Date		1	3/5/2019	
lent Name					Report Time		5	:03:35 PM	
roject Name	Wekiva				Test Date		7	/5/2019	
Project Area					Test Time		2	:55:53 PM	
Supervisor					Superintend	ent			
Pile Number	5.EOD				POM Pile O	Tweet (cm)		000	
Pile Type	0.200				Final Penetr	ation at Blow	27 (m) 2	1.325	
lammer					Stroke (m)		1	.000	
m mm									44.5
21.33									14.0
21.32								18.2	
21.31							17.7	-	14.
21.3							-	17.	1
21.29						17.6	-		
21.28						-	16	1	
21.27					10.8				
21.26					-	16.	5		
21.26					15.1				
21.24									
21.23									
21.22									
21.21									
21.2									
21.19									
21.18				1					
21.17									
21.16									
21.15			1					-	
21.14									
21.13									
21.12									
21.11									
21.1									
21.09				11.8					
21.08			10.6						
21.07	10.3	11.0	•	8.7					
12.4	-	1	6.	7					
21.06	6.2	7.0							
10.1	-								
103-									

Blows

PDM REPORT			
Project Name	Wekiva	Test Date	7/5/2019
Project Area		Pile Number	5-EOD
NUMERICAL D	ATA		
Set (mm)	11.9	VMX (m/s)	2.28
Rebound (mm)	2.2	DMX (mm)	14.1

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
27	14.0	0.5	2.25	21.325
26	17.1	1.1	2.27	21.311
25	16.7	1.0	2.31	21.293
24	16.8	0.8	2.47	21.277
23	15.9	0.9	2.40	21.260
5	8.7	3.1	1.99	21.069
4	6.7	3.8	-	21.060
3	7.0	4.1	-	21.053
2	6.2	4.0		21.046
1	10.1	2.3		21.040
Average	11.9	2.2	2.28	
Max Variation	10.9	3.6	0.47	

PDM REPORT

Project Name Wekiva Test Date 7/5/2019 Project Description Pile Number 5-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	14:55:59	21.04	10.1	2.3	1.939	12.4
2	14:56:00	21.046	6.2	4	2.089	10.3
3	14:56:02	21.053	7	4.1	2.078	11
4	14:56:03	21.06	6.7	3.8	1.992	10.6
5	14:56:05	21.069	8.7	3.1	1.992	11.8
6	14:56:06	21.081	12.4	1	1.989	13.5
7	14:56:08	21.09	9.1	3.1	1.975	12.3
8	14:56:09	21.098	7.6	3.9	2	11.5
9	14:56:10	21.106	8.4	3.4	2.007	11.8
10	14:56:12	21.116	9.8	2.5	2.032	12.3
11	14:56:15	21.125	9.3	2.8	2.035	12
12	14:56:15	21.133	7.8	3.8	1.964	11.6
13	14:56:16	21.142	8.4	3.2	1.9	11.6
14	14:56:18	21.151	9.2	2.8	1.942	12
15	14:56:19	21.16	9.5	3	1.971	12.5
16	14:56:21	21.17	9.4	2.9	1.989	12.4
17	14:56:22	21.179	9.1	3	1.975	12.1
18	14:56:24	21.189	10	2.9	2.049	13
19	14:56:25	21.201	11.7	1.3	2.153	13.1
20	14:56:27	21.213	12.6	1.1	2.167	13.7
21	14:56:28	21.227	14.1	0.9	2.142	15
22	14:56:30	21.244	16.8	0.9	2.332	17.7
23	14:56:31	21.26	15.9	0.9	2.396	16.8
24	14:56:33	21.277	16.8	0.8	2.467	17.6
25	14:56:35	21.293	16.7	1	2.307	17.7
26	14:56:35	21.311	17.1	1.1	2.267	18.2
27	14:56:37	21.325	14	0.5	2.253	14.5
28	14:56:38	21.339	14.6	-5.5	2.149	9.1

29	14:56:41	21.347	7.6	1.5	2.721	9.1
30	14:56:43	21.346	-1.2	6.5	4.817	5.3
31	14:56:44	21.345	-0.9	4	6.927	3.2

PDM REPORT	-		
Project Name	Wekiva	Test Date	7/5/2019
Project Area		Pile Number	6-EOD
NUMERICAL D	DATA		
Set (mm)	1.9	VMX (m/s)	2.14
Rebound (mm)	5.8	DMX (mm)	7.7

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
10	1.6	6.3	2.10	22.573
9	1.1	6.4	2.19	22.571
8	1.1	6.5	2.14	22.570
7	1.4	6.3	2.12	22.569
6	1.2	6.4	2.19	22.567
5	1.9	5.7	2.13	22.566
4	1.7	6.0	-	22.564
3	2.0	5.7	-	22.563
2	2.9	4.5	1	22.561
1	3.8	4.0	-	22.558
Average	1.9	5.8	2.14	
Max Variation	2.7	2.5	0.10	

PDM REPORT

Project Name Wekiva Project Description Test Date Pile Number 7/5/2019 6-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity	DMX (mm)
1	15.43.10	22 558	3.8	<u>(IIIII)</u> <u>4</u>	1 917	7.8
2	15:43:11	22.550	2.9	4 5	2 153	7.4
3	15:43:13	22.563	2.5	5.7	1.885	7.7
4	15:43:14	22.564	1.7	6	2.346	7.7
5	15:43:16	22.566	1.9	5.7	2.128	7.6
6	15:43:17	22.567	1.2	6.4	2.189	7.6
7	15:43:19	22.569	1.4	6.3	2.121	7.8
8	15:43:20	22.57	1.1	6.5	2.139	7.6
9	15:43:24	22.571	1.1	6.4	2.192	7.4
10	15:43:24	22.573	1.6	6.3	2.096	8
11	15:43:25	22.573	0.7	6.6	2	7.3
12	15:43:27	22.574	0.8	6.9	1.971	7.6
13	15:43:28	22.575	0.9	6.4	2.021	7.4
14	15:43:30	22.576	0.8	6.9	2.082	7.7
15	15:43:31	22.577	1	6.5	2.039	7.6
16	15:43:33	22.578	0.7	6.8	2.01	7.5
17	15:43:34	22.579	1	6.8	2.049	7.8
18	15:43:36	22.579	0.7	6.7	2.017	7.4
19	15:43:37	22.58	0.8	6.8	2.071	7.6
20	15:43:39	22.581	0.7	6.7	1.971	7.4
21	15:43:40	22.581	0.7	6.8	1.946	7.5
22	15:43:42	22.582	0.8	6.7	1.935	7.5
23	15:43:44	22.583	0.3	7.3	1.996	7.5
24	15:43:45	22.583	0.9	6.9	2.042	7.7
25	15:43:46	22.584	0.5	6.9	1.935	7.4
26	15:43:48	22.584	0.5	7.1	1.878	7.6
27	15:43:49	22.585	0.6	6.8	1.925	7.4
28	15:43:51	22.585	0.5	6.8	2.074	7.2

			i i		i i i i i i i i i i i i i i i i i i i	1
29	15:43:53	22.586	0.4	7.1	2.092	7.5
30	15:43:54	22.586	0.4	7.1	2.003	7.5
31	15:43:56	22.587	0.4	7.1	2.071	7.4
32	15:43:57	22.587	0.6	7	2.228	7.5
33	15:43:59	22.587	0.1	7.3	2.21	7.4
34	15:44:00	22.588	0.4	7.2	2.035	7.6
35	15:44:02	22.587	-0.2	6.9	1.896	6.7
36	15:44:04	22.588	0.3	6.2	1.832	6.6
37	15:44:05	22.587	-0.4	6.8	1.832	6.3
38	15:44:06	22.587	-0.3	6.5	1.732	6.1
39	15:44:08	22.587	-0.3	6.6	1.735	6.3
40	15:44:09	22.586	-0.5	6.7	1.696	6.2
41	15:44:11	22.586	-0.5	6.9	1.721	6.4
42	15:44:13	22.585	-0.6	7	1.803	6.4
43	15:44:14	22.585	-0.3	6.7	1.789	6.4
44	15:44:16	22.584	-0.5	6.9	1.742	6.4
45	15:44:17	22.584	-0.4	6.7	1.685	6.3
46	15:44:19	22.584	-0.5	6.7	1.675	6.1
47	15:44:20	22.583	-0.5	7.1	1.689	6.7
48	15:44:22	22.583	-0.3	6.9	1.707	6.6
49	15:44:24	22.582	-0.5	7	1.696	6.4
50	15:44:25	22.582	-0.3	6.8	1.703	6.5
51	15:44:26	22.582	-0.4	6.8	1.621	6.3

A.5.2.2 Day 2, 5/8/2019, WLC 3

PILE DRIVING MONITOR

PDM REPORT Stable Reference Monitoring

Company Name Client Name Project Name Project Area Supervisor	Wekiva 2	Report Date Report Time Test Date Test Time Superintendent	13/5/2019 5:07:54 PM 8/5/2019 11:07:24 AM
Pile Number Pile Type Hammer	1-EOD	PDM Pile Offset (m) Final Penetration at Blow 6 (m) Stroke (m)	8.510 18.106 1.000

PDM REPORT Project Name Test Date Wekiva 2 8/5/2019 Project Area Pile Number 1-EOD NUMERICAL DATA VMX (m/s) Set (mm) 47.6 2.98 Rebound (mm) DMX (mm) 43.5 -4.1

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)	
6	40.7	-3.0	3.00	18.106	
5	45.8	-4.1	2.96	18.065	
4	51.0	-4.3	-	18.019	
3	48.9	-4.2	-	17.968	
2	48.7	-4.5	-	17.919	
1	50.6	-4.7	-	17.871	

Average	47.6	-4.1	2.98
Max Variation	10.4	1.7	0.04

PDM REPORT

Project Name	Wekiva 2	Test Date	8/5/2019
Project Description		Pile Number	1-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	11:07:32	17.871	50.6	-4.7	2.972	45.8
2	11:07:34	17.919	48.7	-4.5	2.824	44.1
3	11:07:35	17.968	48.9	-4.2	2.881	44.7
4	11:07:37	18.019	51	-4.3	2.926	46.7
5	11:07:38	18.065	45.8	-4.1	2.96	41.7
6	11:07:40	18.106	40.7	-3	3.002	37.6
7	11:07:41	18.132	26.2	-3.7	2.915	22.5
8	11:07:43	18.128	-4.4	6.1	6.919	1.7

PDM REPORT	r		
Project Name	Wekiva 2	Test Date	8/5/2019
Project Area		Pile Number	2-EOD
NUMERICAL [DATA		
Set (mm)	19.3	VMX (m/s)	2.49
Rebound (mm)	0.8	DMX (mm)	20.1

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
16	15.4	1.1	2.49	19.812
15	15.7	0.8	2.45	19.796
14	16.4	0.8	2.36	19.781
13	16.1	0.8	2.43	19.764
12	17.0	0.7	2.43	19.748
5	18.4	1.2	2.79	19.618
4	19.7	1.2	-	19.600
3	22.3	1.2	-	19.580
2	25.2	0.5	-	19.558
1	26.9	-0.1	-	19.533
Average	19.3	0.8	2.49	
Max Variation	11.5	1.4	0.42	

PDM REPORT

m 19.82 19.81 19.8 19.79 19.78 19.77 19.76 19.75 19.74 19.73 19.72 19.71 19.7 19.69 19.68 19.67 19.66 19.65 19.64 19.63 19.62 19.61 19.6 19.69 19.58 19.57 19.55 19.55 19.54 19.53 19.52 19.51 00:00 00:01 00:03 00:05 00:07 00:09 00:11 00:13 00:15 00:17 00:19 00:21 00:23 00:25 00:27 00:29 00:31 00:33 Time (mm:ss)

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	11:30:11	19.533	26.9	-0.1	2.733	26.7
2	11:30:13	19.558	25.2	0.5	2.71	25.7
3	11:30:14	19.58	22.3	1.2	2.71	23.5
4	11:30:16	19.6	19.7	1.2	3.029	20.9
5	11:30:17	19.618	18.4	1.2	2.786	19.6
6	11:30:19	19.637	18.5	0.8	2.695	19.3
7	11:30:20	19.657	19.9	0.6	2.558	20.5
8	11:30:24	19.675	18.6	1.5	2.452	20.1
9	11:30:24	19.695	19.2	0.8	2.509	20
10	11:30:25	19.713	18.5	0.8	2.463	19.3
11	11:30:26	19.731	18.1	0.6	2.52	18.7
12	11:30:28	19.748	17	0.7	2.425	17.6
13	11:30:29	19.764	16.1	0.8	2.425	16.9
14	11:30:31	19.781	16.4	0.8	2.364	17.2
15	11:30:32	19.796	15.7	0.8	2.452	16.5
16	11:30:34	19.812	15.4	1.1	2.49	16.5
17	11:30:35	19.822	10.5	0.8	2.49	11.3

DM REPORT	Stable R	eference M	Aonitoring						
ompany Name					Report Date	,		13/5/2019	
ient Name					Report Time			5:11:47 PM	
oject Name	Wekiva 2	2			Test Date			8/5/2019	
roject Area					Test Time			11:57:20 AM	
upervisor					Superintend	lent			
						~			
lie Number	3-EOD				PDM Pile O	riset (m) miles et Dieux	40. (m)	8.510	
не туре					Pinal Penco	ration at Blow	16 (m)	21.349	
ammer					Stroke (m)			1.000	
1.35.1					+				17.0
1.35									
1.34								19.6	
1.33							10.0	-	16
1.32							18.8	40.0	
1.31						20.7	-	13.4	
21.3								19.1	
1.29					22.4				
1.28						20.	0		
1.27					-				
1.26					21	7			
1.26					- ···				
1.24									
1.23									
1.22									
1.21									
21.2									
1.19									
1.18				24.9					
1.17									
1.16							1		
1.16			25.9						
1.14				24.	4				
1.13		25.1							
1.12			25.1	1					
21.1	20.4								
1.00	20.1								
1.08	-	24.6							
1.07 28.0									
1.05	25.5								
1.05									
1.04									
1.03 28.	3								
Blow #3	Blow #4	Blow #5	Blow #5	Blow #7	Blow #12	Blow #13	Blow #	14 Blow #15	Blow #16

PDM REPORT			
Project Name	Wekiva 2	Test Date	8/5/2019
Project Area		Pile Number	3-EOD
NUMERICAL D	ATA		
Set (mm)	22.5	VMX (mis)	2.52
Rebound (mm)	0.5	DMX (mm)	23.0

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)	
16	16.6	0.4	2.49	21.349	
15	19.0	0.6	2.36	21.332	
14	19.3	0.6	2.33	21.313	
13	20.0	0.7	2.51	21.294	
12	21.7	0.7	2.71	21.274	
7	24.4	0.5	2.60	21.159	
6	25.7	0.2	2.55	21.134	
5	24.5	0.7	2.61	21.109	
4	25.5	0.6		21.084	
3	28.3	-0.3		21.059	
Average	22.5	0.5	2.52		
Max Variation	11.7	1.0	0.38		

PDM REPORT

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	11:57:26	21.03	0	186.3	72.561	186.3
2	11:57:30	21.031	0.6	184.2	78.413	184.7
3	11:57:36	21.059	28.3	-0.3	2.744	28
4	11:57:38	21.084	25.5	0.6	2.596	26.1
5	11:57:39	21.109	24.5	0.7	2.615	25.1
6	11:57:42	21.134	25.7	0.2	2.554	25.9
7	11:57:43	21.159	24.4	0.5	2.604	24.9
8	11:57:43	21.183	24.4	0.2	2.683	24.5
9	11:57:45	21.207	23.5	0.6	2.66	24.1
10	11:57:46	21.23	23.3	0.4	2.717	23.7
11	11:57:48	21.252	22.1	0.6	2.748	22.7
12	11:57:49	21.274	21.7	0.7	2.706	22.4
13	11:57:51	21.294	20	0.7	2.509	20.7
14	11:57:52	21.313	19.3	0.6	2.33	19.9
15	11:57:53	21.332	19	0.6	2.364	19.6
16	11:57:55	21.349	16.6	0.4	2.493	17
17	11:57:56	21.348	-0.2	-21331.6	2.493	- 21331.8

PDM REPORT Stable Reference Monitoring

I BRITEL OIL			
Company Name		Report Date	13/5/2019
Client Name		Report Time	5:14:11 PM
Project Name	Wekiva 2	Test Date	8/5/2019
Project Area		Test Time	12:30:16 PM
Supervisor		Superintendent	
Pile Number	4-EOD	PDM Pile Offset (m)	8.510
Pile Type		Final Penetration at Blow 26 (m)	22.869
Hammer		Stroke (m)	1.000

PDM REPORT			
Project Name	Wekiva 2	Test Date	8/5/2019
Project Area		Pile Number	4-EOD
NUMERICAL DA	ATA		
Set (mm)	13.0	VMX (m/s)	2.25
Rebound (mm)	2.8	DMX (mm)	15.8

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
26	19.7	0.4	2.49	22.869
25	20.4	0.7	2.50	22.850
24	17.9	0.8	2.41	22.829
15	5.0	5.8	2.04	22.740
14	4.8	5.9	2.16	22.735
13	4.5	5.9	2.06	22.730
12	5.0	5.9	2.07	22.725
3	14.7	1.0		22.606
2	16.6	1.0		22.591
1	20.8	0.7		22.575
Average	13.0	2.8	2.25	
Max Variation	16.2	5.6	0.46	

PDM REPORT

Project Name	Wekiva 2	Test Date	8/5/2019
Project Description		Pile Number	4-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	12:30:23	22.575	20.8	0.7	2.755	21.5
2	12:30:25	22.591	16.6	1	2.414	17.7
3	12:30:26	22.606	14.7	1	2.129	15.7
4	12:30:28	22.617	11	2.1	2.084	13
5	12:30:29	22.631	13.8	0.9	2.175	14.6
6	12:30:31	22.645	14.3	1.2	2.315	15.4
7	12:30:33	22.661	15.4	1	2.463	16.4
8	12:30:34	22.68	19.3	0.9	2.592	20.2
9	12:30:36	22.698	17.7	0.7	2.588	18.4
10	12:30:38	22.711	13.9	0.9	2.395	14.8
11	12:30:39	22.72	8.9	3.5	2.141	12.4
12	12:30:40	22.725	5	5.9	2.068	10.9
13	12:30:42	22.73	4.5	5.9	2.065	10.5
14	12:30:44	22.735	4.8	5.9	2.163	10.6
15	12:30:45	22.74	5	5.8	2.042	10.9
16	12:30:47	22.746	6.2	5.7	2.167	11.8
17	12:30:48	22.753	7.2	4.9	2.106	12.1
18	12:30:50	22.761	7.5	4.4	2.076	12
19	12:30:52	22.768	7.2	4.8	2.042	12.1
20	12:30:53	22.777	9.1	3.9	2.19	13
21	12:30:55	22.785	8.4	3.5	2.213	11.9
22	12:30:58	22.796	11	2.5	2.216	13.5
23	12:30:58	22.811	15	0.8	2.209	15.8
24	12:30:59	22.829	17.9	0.8	2.406	18.7
25	12:31:01	22.85	20.4	0.7	2.501	21.2
26	12:31:03	22.869	19.7	0.4	2.486	20.1

PDM REPORT Stable Reference Monitoring

PDM REPORT

Project Name	Wekiva 2	Test Date	8/5/2019
Project Area		Pile Number	5-EOD
NUMERICAL DA	TA		
Set (mm)	20.3	VMX (m/s)	2.46
Rebound (mm)	0.3	DMX (mm)	20.6

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
16	15.3	0.6	2.35	24.384
15	15.6	0.7	2.41	24.368
14	16.4	0.6	2.47	24.353
13	16.9	1.0	2.50	24.337
12	16.8	0.8	2.50	24.320
5	12.8	1.4	2.51	24.200
4	24.8	0.1	-	24.188
3	26.3	0.0	-	24.163
2	28.8	-0.7		24.136
1	29.7	-1.5	-	24.108
Average	20.3	0.3	2.46	
Max Variation	16.9	2.9	0.16	

PDM REPORT

Project Name Wekiva 2 Test Date 8/5/2019 Project Description Pile Number 5-EOD

COMPLETE VIEW

PDM Serial Number: PG2024174

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)	DMX (mm)
1	13:08:23	24.108	29.7	-1.5	2.607	28.2
2	13:08:25	24.136	28.8	-0.7	2.903	28
3	13:08:26	24.163	26.3	0	2.676	26.4
4	13:08:28	24.188	24.8	0.1	2.425	24.9
5	13:08:29	24.2	12.8	1.4	2.509	14.2
6	13:08:31	24.214	13.8	1.1	2.33	14.9
7	13:08:33	24.228	13.7	1.3	2.361	15
8	13:08:34	24.245	17.4	0.9	2.349	18.3
9	13:08:37	24.265	19.9	0.6	2.44	20.4
10	13:08:37	24.284	19.1	0.7	2.418	19.9
11	13:08:39	24.303	18.5	0.8	2.437	19.3
12	13:08:40	24.32	16.8	0.8	2.505	17.6
13	13:08:42	24.337	16.9	1	2.505	17.9
14	13:08:43	24.353	16.4	0.6	2.471	17
15	13:08:45	24.368	15.6	0.7	2.414	16.3
16	13:08:47	24.384	15.3	0.6	2.353	15.9
17	13:08:48	24.391	7.6	0.8	2.353	8.4

PDM REPORT Stable Reference Monitoring Report Date Company Name 13/5/2019 Client Name Report Time 5:18:02 PM Project Name Wekiva 2 Test Date 8/5/2019 Project Area Test Time 1:41:37 PM Supervisor Superintendent PDM Pile Offset (m) Pile Number 6-EOD 8.510 Pile Type Final Penetration at Blow 10 (m) 25.645 Hammer Stroke (m) 1.000 m | mm 7.8 25.658 25.656 7.6 25.654 25.652 8.0 25.66 8.0 25.648 Line 25.646 25.644 7.8 Ltra 25.642 4.2 25.64 8.0 25.638 3.9 25.636 7.9 time 25.634 4.3 25.632 8.3 -Lun 25.63 3.5 25.628 8.5 1400 25.626 3.8 25.624 10.4 25.622 1.1. 4.1 25.62 3.8 25.618 25.616 25.614 4.5 25.612 25.61 4.5 25.608 25.606 25.604 6.6 25,602 25.6 25.598 25.596 25.594 Blow #1 Blow #2 Blow #3 Blow #4 Blow #5 Blow #6 Blow #7 Blow #8 Blow #9 Blow #10 25.592

Blows

PDM REPORT			
Project Name	Wekiva 2	Test Date	8/5/2019
Project Area		Pile Number	6-EOD
NUMERICAL DA	ATA		
Set (mm)	4.3	VMX (m/s)	2.10
Rebound (mm)	3.9	DMX (mm)	8.2

TABLE VIEW

Blow	Set (mm)	Rebound (mm)	VMX (m/s)	Penetration (m)
10	4.2	3.6	2.00	25.645
9	3.9	3.6	2.02	25.641
8	4.3	3.7	2.13	25.637
7	3.5	4.5	2.18	25.633
6	3.8	4.0	2.12	25.629
5	4.1	3.9	2.14	25.625
4	3.8	4.1		25.621
3	4.5	3.8	-	25.618
2	4.5	4.0		25.613
1	6.6	3.8		25.609
Average	4.3	3.9	2.10	
Max Variation	3.1	0.9	0.18	

		Penetration	Set	Rebound	Velocity	DMX
Blow	StartTime	(m)	(mm)	(mm)	(m/s)	(mm)
1	13:41:46	25.609	6.6	3.8	1.867	10.4
2	13:41:47	25.613	4.5	4	2.038	8.5
3	13:41:49	25.618	4.5	3.8	2.254	8.3
4	13:41:51	25.621	3.8	4.1	1.97	7.9
5	13:41:52	25.625	4.1	3.9	2.144	8
6	13:41:54	25.629	3.8	4	2.118	7.8
7	13:41:56	25.633	3.5	4.5	2.182	8
8	13:41:57	25.637	4.3	3.7	2.129	8
9	13:42:01	25.641	3.9	3.6	2.015	7.6
10	13:42:01	25.645	4.2	3.6	2.004	7.8
11	13:42:02	25.65	5	3.5	2.114	8.5
12	13:42:04	25.655	4.9	3.2	2.319	8.1
13	13:42:05	25.66	4.8	3.3	2.338	8.1
14	13:42:07	25.665	5.2	3.1	2.273	8.2
15	13:42:09	25.67	4.8	3.1	2.141	7.9
16	13:42:10	25.675	5.1	3.2	2.057	8.3
17	13:42:12	25.68	4.5	3.4	1.905	7.9
18	13:42:14	25.684	4.8	2.8	1.879	7.6
19	13:42:15	25.688	4	4	1.951	8
20	13:42:17	25.69	1.9	5.7	2.167	7.6
21	13:42:20	25.692	1.3	6.3	2.224	7.6
22	13:42:20	25.693	0.9	6.8	2.281	7.8
23	13:42:22	25.693	0.7	6.8	2.175	7.5
24	13:42:23	25.694	0.5	7.2	2.175	7.7
25	13:42:25	25.694	0.4	7.1	2.068	7.6
26	13:42:27	25.695	0.4	7.3	2.148	7.7
27	13:42:28	25.695	0.4	7.1	2.099	7.4
28	13:42:30	25.695	0.3	7.4	2.171	7.7

29	13:42:32	25.696	0.4	7.2	2.099	7.6
30	13:42:33	25.696	0.3	7.2	2.175	7.5
31	13:42:35	25.696	0.2	7.6	2.167	7.8
32	13:42:36	25.696	0.2	7.5	2.163	7.7
33	13:42:40	25.697	0.3	7.6	2.141	7.8
34	13:42:40	25.697	0.3	7.4	2.099	7.8
35	13:42:41	25.697	0.2	7.3	2.042	7.6
36	13:42:43	25.697	0.1	7.5	2.053	7.7
37	13:42:45	25.697	0.1	7.6	2.076	7.7
38	13:42:46	25.698	0.3	7.5	2.091	7.7
39	13:42:48	25.698	0.3	7.5	2.034	7.8
40	13:42:49	25.698	-0.1	7.5	1.909	7.5
41	13:42:51	25.698	0.1	7.7	2.023	7.8
42	13:42:53	25.698	0.1	7.6	2.057	7.7
43	13:42:54	25.699	0.5	7	2.133	7.6
44	13:42:56	25.698	-0.3	7.6	2.118	7.3
45	13:43:00	25.699	0.4	7.3	2.129	7.7
46	13:43:00	25.699	0.1	7.6	2.057	7.7
47	13:43:01	25.699	0	7.8	2.023	7.7
48	13:43:03	25.699	0.6	7.2	2.091	7.9
49	13:43:04	25.699	-0.1	7.2	2.182	7.2
50	13:43:06	25.7	0.2	7.4	2.118	7.6
51	13:43:07	25.7	0.1	7	2.038	7.1
52	13:43:09	25.7	0.1	7.4	2.034	7.5
53	13:43:11	25.7	0.1	7.5	2.106	7.6
54	13:43:12	25.7	0.2	7.4	2.008	7.5
55	13:43:14	25.7	0	7.4	2.084	7.5
56	13:43:16	25.7	0.3	7.5	2.023	7.8
57	13:43:17	25.701	0.1	7.4	2.042	7.5
58	13:43:47	25.701	0.3	7.4	1.939	7.7

59	13:43:48	25.701	-0.3	7.6	1.951	7.4
60	13:43:50	25.701	0.3	7.5	1.981	7.8
61	13:43:52	25.701	0.2	7.4	2.087	7.6
62	13:43:53	25.701	0	7.5	2.163	7.5
63	13:43:55	25.701	-0.1	7.8	2.228	7.6
64	13:43:56	25.701	0.2	7.4	2.057	7.7
65	13:43:58	25.701	0.1	7.8	1.996	7.9
66	13:44:00	25.701	0.1	7.7	2.084	7.8
67	13:44:01	25.701	-0.4	8.1	2.167	7.7
68	13:44:05	25.702	0.5	7.2	2.167	7.7
69	13:44:05	25.701	-0.3	8	2.099	7.6
70	13:44:06	25.702	0.3	7.4	2.114	7.6
71	13:44:07	25.701	-0.3	8	2.122	7.7
72	13:44:09	25.702	0.3	7.3	2.038	7.6

Appendix B. CMS Data

B.1 Dunns Creek

B.1.1 Pile10, Pier 4

Dunn's Creek September 19, 2018 Pile at 75 feet Number of hits: 20

Hits	Average of Tops (inches)	Max Displacement (inches)	Rebound (inches)	Change in height (inches)		Max	Rebound (inches)	Change in height
1	N/A	N/A	0.91	N/A		(inches)	neoverne (incident	(inches)
2	0.68	0.99	0.94	0.05				
3	0.73	0.94	0.85	0.09				
4	0.82	1.00	0.91	0.08	Mean	0.99	0.91	0.08
5	0.90	1.00	0.90	0.10	CTD Deviation	0.03553	0.034310301	au é a
6	1.00	0.95	0.90	0.05	310 Deviation	0.02334	0.024233034	ng n
7	1.06	0.99	0.93	0.05	STD Error	0.006013	0.005556309	
8	1.12	1.01	0.89	0.12				N/A
9	1.23	1.00	0.92	0.08				
10	1.31	0.97	0.91	0.06				
11	1.37	0.96	0.87	0.09				
12	1.47	1.01	0.90	0.11				
13	1.57	1.01	0.92	0.09				
14	1.66	1.01	0.94	0.07				
15	1.73	1.01	0.92	0.08				
16	1.81	1.04	0.93	0.11	Total Pile Dis	tance (inches)	Total Pile	Distance (feet)
17	1.92	0.99	0.93	0.07				
18	1.99	0.94	0.86	0.08				
19	2.07	0.98	0.90	0.08	1	47	0.12	2220295
20	2.15	0.98	N/A	N/A			0.14	8887177

B.1.2 SPT near Station 136+38

Dunn's Creek Metal Pipe

March 2019 Camera: Z7 DSC_0292_white_tape

Z7 Camera 120 FPS 1920x1080 40-42 ft

Hits	Top Averages (inches)	Displacement (inches)	Rebound (inches)	Change in Height (inches)	Average Displacement (inches)	Average Rebound (inches)
0	N/A	N/A	N/A	N/A	N/A	N/A
1	3.01856087	1.5852	0.01206087	1.59726087	2.260679834	0.061950261
2	4.620491429	1.63683913	0.034908571	1.601930559	2.260679834	0.061950261
3	6.617454412	1.887408571	0.109554412	1.996962983	2.260679834	0.061950261
4	9.825494118	3.094445588	0.113594118	3.208039706	2.260679834	0.061950261
5	12.96463333	3.099505882	0.039633333	3.139139216	2.260679834	0.061950261

Dunn's Creek Metal Pipe March 2019 Camera: J5 DSC_0290_white_tape 60-62

Number of Hits	Top Avg (inches)	Displacement from hits (inches)	Rebound from hits (inches)	Change in Height (inches)	Average Displacement (inches)	Average Rebound (inches)			
0	N/A	N/A	N/A	N/A	N/A	N/A			
1	2.336359701 3.474082353	1.150359701	0.023359701	1.150359701	0.771693582	0.034841931		Displacement	Rebound
3	4.432384848	0.825084848	0.003215152	0.958302496	0.771693582	0.034841931	Mean	0.771693582	0.034841931
4	5.283722388	0.843822388	0.031277612	0.85133754	0.771693582	0.034841931	STD Deviation	0.078624098	0.000923275
6	6.799988235	0.652888235	0.110611765	0.747286827	0.771693582	0.034841931	STD Error	0.027797816	0.000326427
7	7.250784722	0.493984722	0.022815278	0.450796487	0.771693582	0.034841931			
9	N/A	N/A	N/A	N/A	N/A	N/A			

Appendix C. PDA Data

C.1 Reedy Creek – 7/19/2018 – Floridian Place Extension

576	inches^2		Area					
121	feet		Length					
0.15	kips/feet^3		Specific Weight Density					
14000	feet/secon d	W	ave Speed					
6345.6 9	ksi	N	Elastic Modulus					
F3	F404		93 3					
F4	D632		94.3					
8	feet	Ci	Pile rcumferen ce					
576	inches^2	Во	ttom Area					
	FLORIDI							
DI	PLACE							
PJ	OVER							
	CANAL							
	7-19-18							
PN	END BENT 1							
	PILE 12							
	ID TEST							
PD	PILE							
OP	FGE-JJV	N			Average	0.95	0.88	0.88
					Std Dev	0.12	0.08	0.08
Date	Time		LP		BN	DMX	DFN	SET
			feet			inches	inches	inches
7/19/18	14:37:3	6	65.08		268	1.07	1	1
7/19/18	14:37:3	7	65.17	,	269	1.09	1	1
7/19/18	14:37:3	9	65.25		270	1.09	1	1
7/19/18	14:37:4	0	65.33		271	1.11	1	1

Date	Time	LP	BN	DMX	DFN	SET
		feet		inches	inches	inches
7/19/18	14:37:41	65.42	272	1.13	1	1
7/19/18	14:37:43	65.5	273	1.12	1	1
7/19/18	14:37:44	65.58	274	1.13	1	1
7/19/18	14:37:45	65.67	275	1.14	1	1
7/19/18	14:37:46	65.75	276	1.11	1	1
7/19/18	14:37:48	65.83	277	1.16	1	1
7/19/18	14:37:49	65.92	278	1.17	1	1
7/19/18	14:37:51	66	279	1.17	1	1
7/19/18	14:55:54	98.07	660	0.87	0.86	0.86
7/19/18	14:55:55	98.14	661	0.86	0.86	0.86
7/19/18	14:55:56	98.21	662	0.89	0.86	0.86
7/19/18	14:55:58	98.29	663	0.86	0.86	0.86
7/19/18	14:55:59	98.36	664	0.89	0.86	0.86
7/19/18	14:56:00	98.43	665	0.92	0.86	0.86
7/19/18	14:56:01	98.5	666	0.89	0.86	0.86
7/19/18	14:56:03	98.57	667	0.9	0.86	0.86
7/19/18	14:56:04	98.64	668	0.88	0.86	0.86
7/19/18	14:56:05	98.71	669	0.88	0.86	0.86
7/19/18	14:56:06	98.79	670	0.87	0.86	0.86
7/19/18	14:56:08	98.86	671	0.87	0.86	0.86
7/19/18	14:56:09	98.93	672	0.86	0.86	0.86
7/19/18	14:56:10	99	673	0.87	0.86	0.86
7/19/18	14:59:21	109.07	825	0.87	0.8	0.8
7/19/18	14:59:23	109.13	826	0.87	0.8	0.8
7/19/18	14:59:24	109.2	827	0.86	0.8	0.8
7/19/18	14:59:25	109.27	828	0.86	0.8	0.8
7/19/18	14:59:26	109.33	829	0.86	0.8	0.8
7/19/18	14:59:28	109.4	830	0.87	0.8	0.8
7/19/18	14:59:29	109.47	831	0.87	0.8	0.8
7/19/18	14:59:30	109.53	832	0.89	0.8	0.8
7/19/18	14:59:32	109.6	833	0.85	0.8	0.8
7/19/18	14:59:33	109.67	834	0.86	0.8	0.8

Date	Time	LP	BN	DMX	DFN	SET
		feet		inches	inches	inches
7/19/18	14:59:34	109.73	835	0.86	0.8	0.8
7/19/18	14:59:35	109.8	836	0.86	0.8	0.8
7/19/18	14:59:37	109.87	837	0.87	0.8	0.8
7/19/18	14:59:38	109.93	838	0.87	0.8	0.8
7/19/18	14:59:39	110	839	0.87	0.8	0.8

C.2. Ellis Road I-95 Overpass – 11/30/2018

576	inches^2	Area					
151	feet	Length					
0.15	kips/feet^3	Specific Weight Density					
14550	feet/second	Wave Speed					
6854.08	ksi	Elastic Modulus					
E2	1.624	147.9					
Г Э Е4	L024	147.6					
F4	L619	147.0					
8	feet	Pile Circumference					
576	inches^2	Bottom Area					
PJ	I-95 INTERCHANGE AT ELLIS ROAD						
PN	700239 EB1 P8 TOP						
PD	RE 21.24 GE 18.63 CE 34.9						
OP	MAF		Average	0.42	0.11	0.17	0.32
			Std Dev	0.03	0.05	0.01	0.04
Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
11/30/18	10:29:38	111.01	202	0.41	0.21	0.16	0.2
11/30/18	10:29:39	111.03	203	0.4	0.2	0.16	0.2
11/30/18	10:29:41	111.04	204	0.39	0.18	0.16	0.21
11/30/18	10:29:42	111.05	205	0.39	0.16	0.16	0.23
11/30/18	10:29:44	111.07	206	0.39	0.18	0.16	0.21
11/30/18	10:29:45	111.08	207	0.38	0.16	0.16	0.22

Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
11/30/18	10:29:46	111.1	208	0.38	0.17	0.16	0.21
11/30/18	10:29:48	111.11	209	0.44	0.2	0.16	0.24
11/30/18	10:29:49	111.12	210	0.38	0.15	0.16	0.23
11/30/18	10:29:50	111.14	211	0.38	0.14	0.16	0.24
11/30/18	10:29:52	111.15	212	0.38	0.13	0.16	0.25
11/30/18	10:29:53	111.16	213	0.42	0.15	0.16	0.27
11/30/18	10:29:54	111.18	214	0.38	0.12	0.16	0.26
11/30/18	10:29:56	111.19	215	0.35	0.07	0.16	0.28
11/30/18	10:29:57	111.21	216	0.38	0.11	0.16	0.27
11/30/18	10:29:58	111.22	217	0.38	0.11	0.16	0.27
11/30/18	10:30:00	111.23	218	0.38	0.1	0.16	0.28
11/30/18	10:30:01	111.25	219	0.41	0.13	0.16	0.28
11/30/18	10:30:02	111.26	220	0.39	0.12	0.16	0.27
11/30/18	10:30:04	111.27	221	0.39	0.11	0.16	0.28
11/30/18	10:30:05	111.29	222	0.38	0.1	0.16	0.28
11/30/18	10:30:06	111.3	223	0.42	0.11	0.16	0.31
11/30/18	10:30:08	111.32	224	0.41	0.14	0.16	0.27
11/30/18	10:30:09	111.33	225	0.39	0.09	0.16	0.3
11/30/18	10:30:10	111.34	226	0.39	0.11	0.16	0.28
11/30/18	10:30:12	111.36	227	0.38	0.08	0.16	0.3
11/30/18	10:30:13	111.37	228	0.41	0.1	0.16	0.31
11/30/18	10:30:14	111.38	229	0.4	0.08	0.16	0.32
11/30/18	10:30:16	111.4	230	0.43	0.13	0.16	0.3
11/30/18	10:30:17	111.41	231	0.37	0.06	0.16	0.31
11/30/18	10:30:18	111.42	232	0.36	0.05	0.16	0.31
11/30/18	10:30:20	111.44	233	0.44	0.11	0.16	0.33
11/30/18	10:30:21	111.45	234	0.37	0.07	0.16	0.3
11/30/18	10:30:22	111.47	235	0.38	0.07	0.16	0.31
11/30/18	10:30:24	111.48	236	0.4	0.08	0.16	0.32
11/30/18	10:30:25	111.49	237	0.42	0.06	0.16	0.36
11/30/18	10:30:26	111.51	238	0.39	0.06	0.16	0.33
11/30/18	10:30:28	111.52	239	0.42	0.09	0.16	0.33

Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
11/30/18	10:30:29	111.53	240	0.4	0.08	0.16	0.32
11/30/18	10:30:31	111.55	241	0.39	0.07	0.16	0.32
11/30/18	10:30:32	111.56	242	0.42	0.09	0.16	0.33
11/30/18	10:30:33	111.58	243	0.41	0.06	0.16	0.35
11/30/18	10:30:35	111.59	244	0.43	0.1	0.16	0.33
11/30/18	10:30:36	111.6	245	0.44	0.08	0.16	0.36
11/30/18	10:30:37	111.62	246	0.41	0.08	0.16	0.33
11/30/18	10:30:39	111.63	247	0.38	0.03	0.16	0.35
11/30/18	10:30:40	111.64	248	0.44	0.08	0.16	0.36
11/30/18	10:30:42	111.66	249	0.42	0.06	0.16	0.36
11/30/18	10:30:43	111.67	250	0.41	0.05	0.16	0.36
11/30/18	10:30:44	111.68	251	0.41	0.06	0.16	0.35
11/30/18	10:30:46	111.7	252	0.38	0.04	0.16	0.34
11/30/18	10:30:47	111.71	253	0.41	0.07	0.16	0.34
11/30/18	10:30:48	111.73	254	0.39	0.04	0.16	0.35
11/30/18	10:30:50	111.74	255	0.37	0	0.16	0.37
11/30/18	10:30:51	111.75	256	0.41	0.05	0.16	0.36
11/30/18	10:30:52	111.77	257	0.41	0.06	0.16	0.35
11/30/18	10:30:54	111.78	258	0.39	0.03	0.16	0.36
11/30/18	10:30:55	111.79	259	0.41	0.06	0.16	0.35
11/30/18	10:30:57	111.81	260	0.37	0.01	0.16	0.36
11/30/18	10:30:58	111.82	261	0.43	0.04	0.16	0.39
11/30/18	10:30:59	111.84	262	0.45	0.09	0.16	0.36
11/30/18	10:31:01	111.85	263	0.38	0	0.16	0.38
11/30/18	10:31:02	111.86	264	0.39	0.01	0.16	0.38
11/30/18	10:31:03	111.88	265	0.39	0.02	0.16	0.37
11/30/18	10:31:05	111.89	266	0.41	0.04	0.16	0.37
11/30/18	10:31:06	111.9	267	0.44	0.07	0.16	0.37
11/30/18	10:31:07	111.92	268	0.4	0.01	0.16	0.39
11/30/18	10:31:09	111.93	269	0.42	0.05	0.16	0.37
11/30/18	10:31:10	111.95	270	0.36	-0.03	0.16	0.39
11/30/18	10:31:12	111.96	271	0.43	0.06	0.16	0.37

Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
11/30/18	10:31:13	111.97	272	0.42	0.04	0.16	0.38
11/30/18	10:31:14	111.99	273	0.38	-0.01	0.16	0.39
11/30/18	10:31:16	112	274	0.39	0	0.16	0.39
11/30/18	10:39:48	117.01	652	0.42	0.12	0.18	0.3
11/30/18	10:39:49	117.03	653	0.42	0.13	0.18	0.29
11/30/18	10:39:51	117.04	654	0.46	0.17	0.18	0.29
11/30/18	10:39:52	117.06	655	0.46	0.16	0.18	0.3
11/30/18	10:39:53	117.07	656	0.43	0.13	0.18	0.3
11/30/18	10:39:55	117.09	657	0.47	0.15	0.18	0.32
11/30/18	10:39:56	117.1	658	0.43	0.13	0.18	0.3
11/30/18	10:39:57	117.12	659	0.46	0.15	0.18	0.31
11/30/18	10:39:59	117.13	660	0.45	0.14	0.18	0.31
11/30/18	10:40:00	117.15	661	0.45	0.15	0.18	0.3
11/30/18	10:40:02	117.16	662	0.44	0.15	0.18	0.29
11/30/18	10:40:03	117.18	663	0.46	0.14	0.18	0.32
11/30/18	10:40:04	117.19	664	0.47	0.14	0.18	0.33
11/30/18	10:40:06	117.21	665	0.42	0.11	0.18	0.31
11/30/18	10:40:07	117.22	666	0.46	0.14	0.18	0.32
11/30/18	10:40:08	117.24	667	0.42	0.12	0.18	0.3
11/30/18	10:40:10	117.25	668	0.45	0.14	0.18	0.31
11/30/18	10:40:11	117.27	669	0.45	0.13	0.18	0.32
11/30/18	10:40:12	117.28	670	0.42	0.12	0.18	0.3
11/30/18	10:40:14	117.3	671	0.42	0.1	0.18	0.32
11/30/18	10:40:15	117.31	672	0.43	0.12	0.18	0.31
11/30/18	10:40:16	117.33	673	0.42	0.1	0.18	0.32
11/30/18	10:40:18	117.34	674	0.43	0.11	0.18	0.32
11/30/18	10:40:19	117.36	675	0.43	0.12	0.18	0.31
11/30/18	10:40:21	117.37	676	0.44	0.12	0.18	0.32
11/30/18	10:40:22	117.39	677	0.46	0.12	0.18	0.34
11/30/18	10:40:23	117.4	678	0.43	0.12	0.18	0.31
11/30/18	10:40:25	117.42	679	0.5	0.16	0.18	0.34
11/30/18	10:40:26	117.43	680	0.45	0.12	0.18	0.33

Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
11/30/18	10:40:27	117.45	681	0.45	0.13	0.18	0.32
11/30/18	10:40:29	117.46	682	0.45	0.1	0.18	0.35
11/30/18	10:40:30	117.48	683	0.47	0.14	0.18	0.33
11/30/18	10:40:31	117.49	684	0.46	0.15	0.18	0.31
11/30/18	10:40:33	117.51	685	0.44	0.13	0.18	0.31
11/30/18	10:40:34	117.52	686	0.44	0.11	0.18	0.33
11/30/18	10:40:36	117.54	687	0.41	0.09	0.18	0.32
11/30/18	10:40:37	117.55	688	0.46	0.14	0.18	0.32
11/30/18	10:40:38	117.57	689	0.41	0.09	0.18	0.32
11/30/18	10:40:40	117.58	690	0.45	0.11	0.18	0.34
11/30/18	10:40:41	117.6	691	0.43	0.11	0.18	0.32
11/30/18	10:40:42	117.61	692	0.44	0.12	0.18	0.32
11/30/18	10:40:44	117.63	693	0.45	0.14	0.18	0.31
11/30/18	10:40:45	117.64	694	0.41	0.1	0.18	0.31
11/30/18	10:40:46	117.66	695	0.41	0.11	0.18	0.3
11/30/18	10:40:48	117.67	696	0.44	0.11	0.18	0.33
11/30/18	10:40:49	117.69	697	0.46	0.15	0.18	0.31
11/30/18	10:40:51	117.7	698	0.43	0.12	0.18	0.31
11/30/18	10:40:52	117.72	699	0.44	0.11	0.18	0.33
11/30/18	10:40:53	117.73	700	0.49	0.14	0.18	0.35
11/30/18	10:40:55	117.75	701	0.44	0.12	0.18	0.32
11/30/18	10:40:56	117.76	702	0.46	0.14	0.18	0.32
11/30/18	10:40:57	117.78	703	0.45	0.13	0.18	0.32
11/30/18	10:40:59	117.79	704	0.41	0.1	0.18	0.31
11/30/18	10:41:00	117.81	705	0.42	0.09	0.18	0.33
11/30/18	10:41:01	117.82	706	0.47	0.16	0.18	0.31
11/30/18	10:41:03	117.84	707	0.45	0.15	0.18	0.3
11/30/18	10:41:04	117.85	708	0.43	0.12	0.18	0.31
11/30/18	10:41:06	117.87	709	0.45	0.12	0.18	0.33
11/30/18	10:41:07	117.88	710	0.47	0.16	0.18	0.31
11/30/18	10:41:08	117.9	711	0.44	0.13	0.18	0.31
11/30/18	10:41:10	117.91	712	0.42	0.12	0.18	0.3

Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
11/30/18	10:41:11	117.93	713	0.45	0.14	0.18	0.31
11/30/18	10:41:12	117.94	714	0.5	0.18	0.18	0.32
11/30/18	10:41:14	117.96	715	0.43	0.13	0.18	0.3
11/30/18	10:41:15	117.97	716	0.44	0.14	0.18	0.3
11/30/18	10:41:16	117.99	717	0.44	0.13	0.18	0.31
11/30/18	10:41:18	118	718	0.47	0.16	0.18	0.31

C.3. Dunns Creek Pile 10, Pier 4, near Station 436+37

576	inches^2	Area					
106	feet	Length					
0.15	kips/feet^3	Specific Weight Density					
13150	feet/second	Wave Speed					
5598.54	ksi	Elastic Modulus					
F3	N/130	147.9					
F4	V 102	00.4					
Г4	K195	90.4					
8	feet	Pile Circumference					
576	inches^2	Bottom Area					
РЈ	US 17 at Dunns Creek						
PN	PIER 4, PILE 10						
PD	INITIAL DRIVE, NBR 746 KIPS						
OP	GRL-JP		Average	1.494	1.377	0.150	0.117
			Std Dev	0.040	0.038	0.000	0.006
Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
9/19/18	9:37:06	68.01	248	1.53	1.4	0.15	0.13
9/19/18	9:37:08	68.03	249	1.5	1.38	0.15	0.12
9/19/18	9:37:09	68.04	250	1.52	1.4	0.15	0.12
9/19/18	9:37:10	68.05	251	1.53	1.41	0.15	0.12
9/19/18	9:37:12	68.06	252	1.51	1.38	0.15	0.13
9/19/18	9:37:13	68.08	253	1.48	1.36	0.15	0.12
9/19/18	9:37:14	68.09	254	1.48	1.37	0.15	0.11
9/19/18	9:37:16	68.1	255	1.5	1.38	0.15	0.12
9/19/18	9:37:17	68.11	256	1.57	1.45	0.15	0.12
9/19/18	9:37:18	68.13	257	1.51	1.39	0.15	0.12

Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
9/19/18	9:37:20	68.14	258	1.5	1.37	0.15	0.13
9/19/18	9:37:21	68.15	259	1.46	1.35	0.15	0.11
9/19/18	9:37:22	68.16	260	1.47	1.36	0.15	0.11
9/19/18	9:37:24	68.18	261	1.47	1.35	0.15	0.12
9/19/18	9:37:25	68.19	262	1.53	1.41	0.15	0.12
9/19/18	9:37:26	68.2	263	1.5	1.37	0.15	0.13
9/19/18	9:37:28	68.22	264	1.49	1.37	0.15	0.12
9/19/18	9:37:29	68.23	265	1.48	1.36	0.15	0.12
9/19/18	9:37:30	68.24	266	1.44	1.32	0.15	0.12
9/19/18	9:37:32	68.25	267	1.52	1.39	0.15	0.13
9/19/18	9:37:33	68.27	268	1.49	1.37	0.15	0.12
9/19/18	9:37:34	68.28	269	1.46	1.34	0.15	0.12
9/19/18	9:37:36	68.29	270	1.46	1.34	0.15	0.12
9/19/18	9:37:37	68.3	271	1.53	1.41	0.15	0.12
9/19/18	9:37:39	68.32	272	1.47	1.35	0.15	0.12
9/19/18	9:37:40	68.33	273	1.44	1.33	0.15	0.11
9/19/18	9:37:41	68.34	274	1.45	1.34	0.15	0.11
9/19/18	9:37:43	68.35	275	1.48	1.36	0.15	0.12
9/19/18	9:37:44	68.37	276	1.51	1.39	0.15	0.12
9/19/18	9:37:45	68.38	277	1.46	1.34	0.15	0.12
9/19/18	9:37:47	68.39	278	1.46	1.35	0.15	0.11
9/19/18	9:37:48	68.41	279	1.46	1.34	0.15	0.12
9/19/18	9:37:49	68.42	280	1.5	1.38	0.15	0.12
9/19/18	9:37:51	68.43	281	1.53	1.42	0.15	0.11
9/19/18	9:37:52	68.44	282	1.55	1.43	0.15	0.12
9/19/18	9:37:53	68.46	283	1.49	1.37	0.15	0.12
9/19/18	9:37:55	68.47	284	1.47	1.35	0.15	0.12
9/19/18	9:37:56	68.48	285	1.47	1.36	0.15	0.11
9/19/18	9:37:58	68.49	286	1.49	1.37	0.15	0.12
9/19/18	9:37:59	68.51	287	1.57	1.45	0.15	0.12
9/19/18	9:38:00	68.52	288	1.49	1.37	0.15	0.12
9/19/18	9:38:02	68.53	289	1.5	1.38	0.15	0.12

Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
9/19/18	9:38:03	68.54	290	1.44	1.32	0.15	0.12
9/19/18	9:38:04	68.56	291	1.54	1.42	0.15	0.12
9/19/18	9:38:06	68.57	292	1.52	1.4	0.15	0.12
9/19/18	9:38:07	68.58	293	1.51	1.4	0.15	0.11
9/19/18	9:38:08	68.59	294	1.46	1.34	0.15	0.12
9/19/18	9:38:10	68.61	295	1.45	1.34	0.15	0.11
9/19/18	9:38:11	68.62	296	1.51	1.39	0.15	0.12
9/19/18	9:38:12	68.63	297	1.45	1.34	0.15	0.11
9/19/18	9:38:14	68.65	298	1.5	1.38	0.15	0.12
9/19/18	9:38:15	68.66	299	1.51	1.39	0.15	0.12
9/19/18	9:38:17	68.67	300	1.45	1.33	0.15	0.12
9/19/18	9:38:18	68.68	301	1.48	1.36	0.15	0.12
9/19/18	9:38:19	68.7	302	1.56	1.44	0.15	0.12
9/19/18	9:38:21	68.71	303	1.52	1.4	0.15	0.12
9/19/18	9:38:22	68.72	304	1.48	1.37	0.15	0.11
9/19/18	9:38:23	68.73	305	1.49	1.38	0.15	0.11
9/19/18	9:38:25	68.75	306	1.47	1.36	0.15	0.11
9/19/18	9:38:26	68.76	307	1.51	1.39	0.15	0.12
9/19/18	9:38:27	68.77	308	1.5	1.39	0.15	0.11
9/19/18	9:38:29	68.78	309	1.45	1.34	0.15	0.11
9/19/18	9:38:30	68.8	310	1.53	1.42	0.15	0.11
9/19/18	9:38:31	68.81	311	1.57	1.45	0.15	0.12
9/19/18	9:38:33	68.82	312	1.54	1.43	0.15	0.11
9/19/18	9:38:34	68.84	313	1.53	1.41	0.15	0.12
9/19/18	9:38:36	68.85	314	1.43	1.32	0.15	0.11
9/19/18	9:38:37	68.86	315	1.43	1.32	0.15	0.11
9/19/18	9:38:38	68.87	316	1.52	1.4	0.15	0.12
9/19/18	9:38:40	68.89	317	1.51	1.4	0.15	0.11
9/19/18	9:38:41	68.9	318	1.5	1.38	0.15	0.12
9/19/18	9:38:42	68.91	319	1.43	1.33	0.15	0.1
9/19/18	9:38:44	68.92	320	1.43	1.31	0.15	0.12
9/19/18	9:38:45	68.94	321	1.46	1.35	0.15	0.11

Date	Time	LP	BN	DMX	DFN	SET	Rebound
		feet		inches	inches	inches	inches
9/19/18	9:38:46	68.95	322	1.48	1.37	0.15	0.11
9/19/18	9:38:48	68.96	323	1.4	1.3	0.15	0.1
9/19/18	9:38:49	68.97	324	1.54	1.43	0.15	0.11
9/19/18	9:38:50	68.99	325	1.59	1.48	0.15	0.11
9/19/18	9:38:52	69	326	1.59	1.47	0.15	0.12

Appendix D. CMS Testing Procedures

D.1 Choosing a Camera

A mono camera with or without multispectral capability using staff gauge type target or laser line target is proposed in this study (Bostater, et al. 2014). The cameras used for this research are relatively inexpensive in terms of high-end camera. With the specialty lens, tripod, and miscellaneous equipment they are approximately \$2000 in 2020. Figure D-1 shows a typical CMS camera.

Figure D-1 Typical Camera for Field Testing

The options available for this type of work are outlined in Table D-1. Either one, two r or three cameras can be deployed. Various types of targets can be deployed and various number of cameras can be used for each option. The trinocular system relies on three cameras and would be the most expensive. The field of vision (FOV) increases with each option. The methods used to obtain a target as either motion or functions of a Cartesian coordinate system (i.e. x, y, z). Mono cameras can be easily used while the coverage area increases with both multispectral and trinocular cameras. All three options require the same gauge or targets on the device that is monitored.

	Mono	Multispectral	Trinocular
Camera number	1	1 or 2	3
Viewing Target	Staff Gauge Type	Laser Line Image	to be determine
Determine FOV			
Deployment of camera(s)	$\overline{\mathcal{R}}$		
Method used to obtain target height	read surface level motion changes against staff gauge or laser target	$\begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \end{bmatrix} f(\alpha, \theta, \tau) = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$	$\begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \\ y_3 \\ y_3 \end{bmatrix} f(\alpha, \theta, \tau) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
Virtues	easy to achieve	larger coverage	larger coverage more accuracy
Shortcomings	staff gauge(s) or other targets needed for height extraction	staff gauge(s) or other equipment needed for validation	staff gauge(s) or other equipment needed for validation
Reference	Bostater et al., 2014	Benetazzo et al., 2012	Wanek et al., 2005

Table D-1 Advantages and Disadvantages of Cameras for Detecting Movements

D.2 Camera in Field Location

Setup of the cameras varied at each site. Vibrations were more of a concern during pile driving than SPT testing. In general, the goal was to safely record as close as possible and reduce the effects of vibrations. Placing the camera close enough minimizes the need of extreme lens zooming. At locations where the testing area was relatively level, the CMS cameras were placed on the flat surface and the viewing was relatively level. However, if the site location on the pile is below the camera grade, as was the case at Reedy Creek (Figure D-2) the cameras were angled to record the videos.

At the first few pile driving sites, foam was placed under the camera tripod to reduce vibration effects (Figure D-2). However, this did not always work since the camera and tripod actually

become less stable on the vibrating cushion. If this approach is to be used a heavier tripod may help stabilize the equipment. In general, it was found that ground vibration effects *were* reduced by use a vibration reduction lens.

Figure D-2 Typical Camera Setups

D.3 Marking the Pile or SPT Rods

Piles and SPT rods were marked using several techniques. At all sites, the piles were marked before being placed into the hammer leads. Either black spray paint or electrical tape (white or black ½ or ¾ inches wide) were used on piles (See Figure D-3), while white chalk plus the tape was used on the SPT rods. Note that the black spray paint lines did not need to be perfectly straight in order for the CMS video imaging to be processed. Pile markings were typically placed at one-foot intervals. To aid during video processing, a silver permanent marking pen was also used to write the foot number next to or on the tape. These silver footmarks allowed were then

viewed within the images. SPT markings were placed at 6-inch intervals to match with the blow counts recorded by the drillers.

Figure D-3 Typical Pile plus PDM Markings

Figure D-4 Typical CMS and PDM SPT Rod Markings

Analysis of the images indicated that black spray-painted lines worked just as well as tape lines on the concrete piles. The horizontal sprayed lines were typically ³/₄ to just over 1 inch in width. The painted lines with the viewable foot mark written within the line worked the best, since the electrical tape tended to fall off the pile during driving.

SPT video recordings proved difficult because of the dark metal rods. Black tape did not provide high quality contrast for automated detection of vertical displacements. White reflector tape similar to the PDM tape was tested and also produced poor displacement analyses results, due to the changing reflectivity within the PDM tape. White electrical tape worked as well as the white chalk used by the drillers to determine the SPT 6-inch blows. The disadvantage of the white tape was that it tended to fall off of the SPT rods. Therefore, a horizontal white chalk line drawn

across half the diameter of the rod is the preferred method for marking SPT rods. These markings would allow a complete 24-inch SPT displacement monitoring record to be produced.

D.4. Synchronizing CMS, PDM, and PDA Data

Camera clocks as well as the PDM were synchronized to approximately the nearest second. Blow counts were easily recorded by using the sound recording feature of the video recordings. In addition, voice comments made during the recording proved useful. Timings with the PDM are also assisted since the laser dots that specify the active PDM testing region were viewable in the video before the PDM measurements became active.

D.5. Smart Image Processing

The "automated" or smart image analysis procedure automatically records the displacement, rebound and set as will be shown in the results. This analysis takes very little time to process and produces the *staircase graphical output* of displacement versus time.

The cameras selected for evaluation, produced imagery with digital resolutions of 8 to 14 bits. Thus, the effective radiance intensity in terms of digital counts for the camera systems range from 0-255 for 8-bit to 0-16384 digital counts or intensity values for 14-bit recordings. The Nikon cameras all produce >8-bit videos which helps eliminate the need for higher frame rates. The JVC camera records at 8-bits and frame rates as high as 600 Hz. Analyses of the videos images indicates that the higher frame rates did not produce as reliable results because the required integration time was much shorter therefore, requiring higher light levels to enable the automated edge contrast detection algorithms to work properly. Vibrations detected during driving needed to be removed.

The use of vibration reduction lenses and zoom capabilities also allows the user to produce high quality displacement results. A stable image sequence with high zoom allows the user to calibrate (i.e. measure) small pixel sizes. The small pixel sizes are determined by knowing any known size of a feature on a pile or SPT rod. In practice we used a piece of tape placed anywhere on the pile near the beginning of the pile driving. Any change in zoom level and or change in the distance of the camera from the pile or rod requires a recalibration of the pixel size, which is

accomplished using a piece of tape. Once the pixel size is known, using the number of pixels in a specified tape width, the width or dimensions of a pixel is calculated. This measurement allows one to calculate the number of pixels per inch. The process is enhanced using a magnifying camera film loupe. This magnification loupe allows precise measurement of the tape or other features on a pile or SPT rod.

Figure D-6 is a photo extracted from within the video recorded at 60 frames per second at the 75foot mark of the concrete test pile at Dunns Creek in Palatka Florida. Black electrical tape and white reflective tape were both visible within the frame. Calibration of the black tape indicted the video frame pixels were 0.658 mm in height. The black tape was tracked as the pile was driven into the soil. The white reflective tape was used by the PDM system to produce movements per hammer blow for validating the camera monitoring system.

D.6. Essential Video Imagery Processing Steps

Figure D-5 is a flow chart describing the five critical image and signal processing steps used to process the high-speed camera video recordings. Keep in mind that image calibration is performed once for a pile or rod being driven, unless the position of the camera is changed, or the lens zoom level is changed. The key steps include the following steps.

(1) Obtaining images then converting each video frame to an image.

(2) Determining a region of interest (ROI) for the signal detection and analysis.

(3) Analyzing each ROI to detect a paint line or tape and determine displacements in terms of mm or inches to produce the position change of the marking on the pile or rod.

(4) Modifying steps 1 thru 3 to optimize the signals such that plots of displacement versus time are produced.

(5) Safely acquiring additional data for subsequent piles or SPT rods.

The raw data are used to calculate the displacement statistics, including rebound and set for a sequence of hammer blows plus standard error of the mean displacement.

Figure D-5 Five Steps for Processing Video Imagery

Figure D-6 Dunns Creek Concrete Test Pile Photo at 75-Foot Location from 9/19/2018 Video Frame Recorded At 60-Hz

D.7. Laboratory Pixel Size Calibration

For this research the pixel size calibration procedure was developed using a wooden box built to simulate a pile as shown in the standard photo in Figure D-7. The calibration procedure requires the use of eye or loupe scopes (Figure D-8) with a reticule¹. Bullet crosshair targets were placed on the wooden pile for pixel size calibrations. During calibration, the test pile was placed on foam and a sledgehammer was used to simulate a pile driving hammer strike. The vertical displacement was tracked using the white or black tape and paint lines. The corresponding video image was then used to develop the calibrations as shown in Figure D-8.

¹ Reticule: a series of fine lines in a scope often found in telescopes, cameras and rifles; also a women's small handbag with meshing[©].

Figure D-7 Laboratory wooden simulated pile with PDM and CMS markings

Figure D-8 Video Image of the Wooden Laboratory Test Pile and Markings Plus Photo of Eye or Loupe Scope

D.8. Pile Driving Movement Evaluation Procedure

Once the lab camera pixel calibration was completed, the target can be placed on the pile or SPT rods and used to determine movements. The corresponding field video analysis procedure produces a pixel size in terms of mm or inches as shown in Figure D-9.

Figure D-9 includes two images, the left most image includes a region of interest (ROI) established for the analysis. The vertical distance shown is approximately 1-foot and includes 966 pixels. The right most image shows that 61 pixels are within the black tape, which was measured with the loupe scope as 12 mm, producing a pixel width of 0.197 mm or 0.00774 inches. Figure D-9 was acquired at the Baldwin Bypass site near Jacksonville, Florida.

The procedure for calibration of videos for *each site* requires the determination of the vertical size of a pixel within a video image. This measurement is accomplished by using the known width of a piece of tape. Knowledge of tape width is determined using a loupe or eye scope with a reticule as shown in the image. This allows one to determine the pixel size in mm or inches. Once known, any pixel, tape or paint line can be tracked by analysis of the region of interest from one video image to another in a temporal sequence as described below.

Figure D-9 Video Images Showing Pile Markings and Analysis of ROI to Produce Pile Driving Movements

D.9. Video Processing

All videos sequences are recorded in standard *mpeg* or *mov* format using the Nikon cameras. The JVC video camera recordings are converted to *mov* or *jpeg* format. Video sequences are cropped with respect to time. Cropping reduces the video sequence lengths and corresponding file size. Videos are cropped to seconds based upon the chosen pile driving hits to be analyzed. For the concrete piles cropping was chosen as the length of time required to drive a pile at least one foot. During this time interval the number of hammer blows can be counted using the sound recording in the selected video to be analyzed. Next, each frame in the video is converted to a jpeg image file format. Then a ROI within the jpeg images is selected and a reduced image (cropped in size) can be used to automatically track the displaced tape or paint line vertical position as the pile driving occurs. The paint line or tape is found in each ROI image. Figure D-10 shows a typical set of CMS video imaging results. These data are then reduced to deflections per blow similar to Figure D-11.

Figure D-10 Typical Image Processing of Vertical Deflection versus Frame Number

Blow	Date	Time	Max Pile Top Displaceme nt (Inches)	Pile Top Set (Inches)	Pile Top Rebound (inches)
940	5/14/18	2:45:06 PM	0.5944	0.3424	0.2520
941	5/14/18	2:45:08 PM	0.7364	0.5993	0.1371
942	5/14/18	2:45:09 PM	0.6368	0.3905	0.2463
943	5/14/18	2:45:11 PM	0.6004	0.3712	0.2292
944	5/14/18	2:45:12 PM	0.5917	0.3528	0.2389
945	5/14/18	2:45:13 PM	0.5740	0.2664	0.3075
946	5/14/18	2:45:15 PM	0.5895	0.3003	0.2892
947	5/14/18	2:45:16 PM	0.6041	0.3202	0.2839
948	5/14/18	2:45:18 PM	0.5380	0.2523	0.2857
949	5/14/18	2:45:19 PM	0.5961	0.3398	0.2563
950	5/14/18	2:45:21 PM	0.6306	0.4111	0.2194
951	5/14/18	2:45:22 PM	0.6376	0.4468	0.1908
952	5/14/18	2:45:23 PM	0.7232	0.5694	0.1538
953	5/14/18	2:45:25 PM	0.6215	0.4063	0.2152
954	5/14/18	2:45:26 PM	0.6416	0.4174	0.2242
955	5/14/18	2:45:28 PM	0.6356	0.4102	0.2254
956	5/14/18	2:45:29 PM	0.6324	0.4479	0.1844
957	5/14/18	2:45:30 PM	0.6141	0.3162	0.2979
958	5/14/18	2:45:32 PM	0.6702	0.4604	0.2098
959	5/14/18	2:45:33 PM	0.6438	0.3353	0.3085
960	5/14/18	2:45:35 PM	0.6077	0.3136	0.2942
		Average	0.6247	0.3843	0.2405
		Stand Dev	0.0453	0.0885	0.0492
		Std Error	0.0099	0.0193	0.0107

Figure D-11 Typical Reduced CMS Measurement Data

The automatic detection of a paint line or tape is performed by selecting a digital count or effective radiance that allows discrimination of the line or tape from the pile background light intensity. The pixels selected are then vertically averaged and horizontally averaged. The averaging process results in one point in each image that changes only in its vertical position as a function of frame number. Knowledge of the frame rate allows time in seconds to be estimated and the pixel size allows the estimation of vertical displacement in inches or mm versus time. A plot of position versus time for each point within an image is saved and the time series is created.

The CMS equipment and data reduction is currently under development. Upgrades to the system will produce near real time results on a robust camera/computer system.

Appendix E. Soil Profiles and PDA Plots E.1 SPT Plots

The SPT plots for each site include boring name, soil descriptions with USCS symbols, elevations, followed by plots with N_{SPT} values versus boring elevation.

Figure E-1 – I-4 & SR-417 Soil profile for Soil Boring B-1

Figure E-2 – I-4 & SR-417 N_{SPT} values for Soil Boring B-1

Figure E-3 – I-4 & SR-417 Soil for Soil Boring B-2

Figure E-4 – I-4 & SR-417 N_{SPT} values for Soil Boring B-2

Figure E-5 – I-4 & SR-417 Soil profile PD&E Soil Boring B-1

Figure E-6 – I-4 & SR-417 N_{SPT} values for PD&E Soil Boring B-1

Figure E-7 I-4 & SR-417 Soil profile for PD&E Soil Boring B-2

Figure E-8 I-4 & SR-417 N_{SPT} values for PD&E Soil Boring B-2

E.1.2 Heritage Parkway

Figure E-9 – Heritage Soil profile for Soil Boring TH-5

Figure E-10 – Heritage $N_{\mbox{\scriptsize SPT}}$ values for Soil Boring TH-5

Figure E-11 - Heritage Soil profile for Soil Boring TH-6

Figure E-12 – Heritage N_{SPT} values for Soil Boring TH-6

Figure E-13 – I-10 & Chaffee Soil Profile for Soil Boring B-2

Figure E-14 – I-10 & Chaffee N_{SPT} Values for Soil Boring B-2

Figure E-15 – I-4 & SR-192 Soil Profile for Soil Boring B-27

Figure E-16 – I-4 & SR-192 N_{SPT} Values for Soil Boring B-27

Figure E-17 – I-4 & SR-192 Soil Profile for Soil Boring B-39

Figure E-18 – I-4 & SR-192 N_{SPT} values for Soil Boring B-39

Figure E-19 – I-4 & SR-192 Soil Profile for Soil Boring B-40

Figure E-20 – I-4 & SR-192 N_{SPT} Values for Soil Boring B-40

Figure E-21 – I-4 & SR-192 Soil Profile for Soil Boring B-41

Figure E-22 – I-4 & SR-192 N_{SPT} Values for Soil Boring B-41

E.1.4 Ramsey Branch

Figure E-23 – Ramsey Branch Soil Profile for Soil Boring B-1

Figure E-24 – Ramsey Branch N_{SPT} Values for Soil Boring B-1

Figure E-25 - Ramsey Branch Soil Profile for Soil Boring B-3

Figure E-26 – Ramsey Branch N_{SPT} Values for Soil Boring B-3

E.2 PDA Rebound Plots

The following plots show the PDA Maximum Displacement (DMX), Set and Rebound for all 5 sites evaluated. Elevations were calculated by subtracting the depth of the pile driven into the ground from the Ground Soil Elevation (GSE). Some elevation values are negative, meaning that it is below the sea level (elevation = 0).

For some tests, the rebound values were negative, which should not occur. The most likely cause for this would be an error from the Set.

Notes for figure titles: EB = end bent, IB = Intermediate Bent, PR = productionpile, P = pier or pile, PL = pile

Figure E-27 – I-4 & SR-417 EB1P14

Figure E-28 – I-4 & SR-417 EB2P5

E.2.2 Heritage Parkway

Figure E-30 – Heritage EB5P1

Figure E-32 – Heritage IB3P1

Figure E-33 – Heritage IB4P10

Figure E-36 – I-4 & SR-192 P6P16

0.7

1.2

Elevation (ft)

Figure E-38 – I-4 & SR-192 P8P4

0.2

-0.3 -10.0

-0.8

Figure E-40 – Ramsey Branch EB1P2

Figure E-41 – Ramsey Branch E1P3

Figure E-42 – Ramsey Branch EB4P5

Figure E-43 – Ramsey Branch EB5P2

Appendix F. CT Damping Analysis

F.1 CU Triaxial Data and Results

Site	Boring	Depth	Area (si)	Height (in)	Mass (lb)
Chaffee	EB3	52-55	6.3734	6.13381	2.2106
Chaffee	North of I-10	47-49	6.4316	6.1964	2.4022
Chaffee	North of I-10	60-62	6.3043	6.0631	2.6583
Average			6.3698	6.1311	2.4237
I4&192	Pier 6	50-52	6.5881	5.5690	2.3785
I4&192	Pier 6	60-62	6.5348	5.5535	2.3258
I4&192	Pier 6	75-77	6.5620	5.6171	2.3377
I4&192	Pier 6	80-82	6.4512	5.5910	2.2870
I4&192	Pier 7	60-62	6.5054	5.5918	2.4804
I4&192	Pier 7	70-72	6.4074	5.6054	1.9506
I4&192	Pier 7	85-87	6.5654	5.5934	2.4438
I4&192	Pier 8	45-47	6.5269	5.5673	2.4118
I4&192	Pier 8	55-57	6.5359	5.5601	2.5185
I4&192	Pier 8	65-66	6.3727	5.6263	2.2690
I4&192	Pier 8	70-72	6.4291	5.6064	2.1788
I4&192	B6 EB1	50-52	6.5813	5.5471	2.4292
I4&192	B6 EB1	58-59	6.5382	5.5093	2.5022
I4&192	B6 EB1	70-72	6.4647	5.6000	2.2348
I4&192	B6 EB1	80-82	6 4963	5 5773	2.2914
I4&192	B6 EB1	91-93	6 4816	5 6038	2 3940
14&192	B7 EB1	46-47	6 4805	5 5840	2 4700
14&192	B7 EB1	70-72	6 4692	5 6223	2 4019
14&192	B7 EB1	75-77	6 4 5 5 7	5 5958	2 2399
Average	D7 ED1	15-11	6 4972	5 5853	2 3445
	FB1	20-22	6 4 2 9 3	5 8698	2.5445
14&417	EB1	20-22	6 4466	6 2021	2.5237
IA&A17	EB1	58-61	6 4124	6 1 1 9 9	2.3157
$I = \frac{1}{2} $	EB1	23-25	6 5350	6 2022	2.7332
$I = \frac{1}{2} $	EB2	25-25 55-57	6 10/19	6 1084	2.7522
A verage	LD2	55-51	6 3858	6 1005	2.4100
I4&Osceola	Pier 2	75-76	6 5506	5 6029	2 3362
I4&Osceola	Pier 2	80-81	6 2146	5 5434	2.3502
14&Osceola	Pier 2	85-87	6 1713	5.4360	2.2020
I4&Osceola	Pier 3	75-76	6 4873	5 6124	2.4020
I4&Osceola	Pier 3	80-82	6 5370	6 1173	2.2337
14&Osceola	Pier A	60-6 <u>2</u>	6.4312	5 7649	2.6927
Average	1 101 4	00-01	6 3987	5.6795	2.0570
Heritage	P1	62-64	0.5707	5.0775	2.4500
Heritage	EB5	57-59	6.0306	5 9075	2 1870
Heritage	EB5	65 67	6 30/7	6.0419	2.1070
Heritage	ED3 D10	55 57	6 2102	6 1025	2.3374
Horitage	1 10 D10	67.61	6 2470	6 1642	2.3000
Average	F 10	02-04	6 2221	6.0765	2.4330
Dameau Branch	D٦	21 22 5	6 1766	6 20.40	2.3093
Ramsey Branch	D2 D2	51-55.5 A1 A2 5	0.4/00	0.2048	2.0009
Ramsey Dranch	D2	41-43.3	6.4022	6 1050	2.0422
Ramsey Branch	B3 D2	48.3-31	0.4023	6.1059	2.0090
Kamsey Branch	вэ	03.3-00	0.3039	6.1051	2.0333
Average			6.4288	0.1469	2.6913

Table F-1 Sample Dimensions and Mass

Sito	Location	Sample Depth	Confining Stress	Failure Stress	Failure Strain
Sile	Location	(ft)	(σ3)	(psi)	(%)
Chaffee	EB3	52-55	17.00	17.99	3.12
Chaffee	North of I-10	47-49	15.00	13.94	3.09
Chaffee	North of I-10	60-62	21.00	62.81	26.46
I4&192	Pier 6	50-52	20.00	34.90	21.62
I4&192	Pier 6	60-62	24.00	52.96	25.80
I4&192	Pier 6	75-77	32.00	65.69	10.42
I4&192	Pier 6	80-82	32.00	65.69	10.42
I4&192	Pier 7	60-62	27.00	83.23	12.34
I4&192	Pier 7	70-72	30.00	47.93	18.29
I4&192	Pier 7	85-87	35.00	36.45	28.11
I4&192	Pier 8	45-47	18.00	21.14	21.50
I4&192	Pier 8	55-57	21.00	43.02	12.86
I4&192	Pier 8	65-66	24.00	72.34	30.10
I4&192	Pier 8	70-72	24.00	60.24	2.75
I4&192	B6 EB1	50-52	20.00	53.36	24.63
I4&192	B6 EB1	58-59	20.00	53.36	24.63
I4&192	B6 EB1	70-72	25.00	50.79	5.75
I4&192	B6 EB1	80-82	27.00	59.72	3.92
I4&192	B6 EB1	91-93	34.00	52.16	10.83
I4&192	B7 EB1	46-47	18.00	58.73	15.60
I4&192	B7 EB1	70-72	25.00	53.92	18.34
I4&192	B7 EB1	75-77	27.00	69.02	12.31
I4&417	EB1	20-22	10.00	328.51	6.16
I4&417	EB1	29-31	10.00	328.51	6.16
I4&417	EB1	58-61	24.00	214.61	18.44
I4&417	EB2	23-25	12.00	20.56	21.90
I4&417	EB2	55-57	24.00	54.57	14.97
I4&Osceola	Pier 2	75-76	30.00	31.65	17.36
I4&Osceola	Pier 2	80-81	32.00	58.89	16.12
I4&Osceola	Pier 2	85-87	34.00	250.43	7.93
I4&Osceola	Pier 3	75-76	27.00	35.84	4.08
I4&Osceola	Pier 3	80-82	30.00	51.98	18.77
I4&Osceola	Pier 4	60-61	20.00	28.31	17.39
Heritage	P1	62-64	25.00	38.31	14.89
Heritage	EB5	57-59	24.00	29.85	16.26
Heritage	EB5	65-67	24.00	29.85	16.26
Heritage	P10	55-57	23.00	23.35	14.13
Heritage	P10	62-64	25.00	31.45	16.91
Ramsey Branch	B2	31-33.5	17.00	55.61	4.24
Ramsey Branch	B2	41-43.5	20.00	52.93	9.36
Ramsey Branch	B3	48.5-51	29.00	50.62	9.97
Ramsey Branch	B3	63.5-66	29.00	50.62	9.97

Table F-2 CU Triaxial Results

F.2 PythonTM CT Results output

Table F-3 CT Results output PythonTM

		Denth	Total	Church	Displacement	A	A	%	%	5	Failure	Namaaliaad
Site	Location	Depth	Number of	Stress	vs Time Area	Average of E	Average of η	Infinite	Outliers	E cut off	Stress	Normalized
		(ft)	Cycles	Level (psi)	(si)	(psi)	(S.ID/SI)	E	E	value (psi)	(psi)	Stress
I-10 & Chaffee	B1	50-52	1000	2.83	62944.95	22364.44	1.16	2.39	2.57	1.8E+05	17.99	16%
I-10 & Chaffee	B1	50-52	2000	5.14	62233.25	19054.01	0.11	2.39	2.57	1.8E+05	17.99	29%
I-10 & Chaffee	B1	50-52	3000	10.30	62219.56	13977.61	0.04	2.39	2.57	1.8E+05	17.99	57%
I-10 & Chaffee	B1	50-52	4000	12.40	62342.74	11148.71	0.02	2.39	2.57	1.8E+05	17.99	69%
I-10 & Chaffee	B1	50-52	5000	14.54	62329.05	9333.78	0.01	2.39	2.57	1.8E+05	17.99	81%
I-10 & Chaffee	B1	50-52	6000	17.15	62684.90	7365.98	0.01	2.39	2.57	1.8E+05	17.99	95%
I-10 & Chaffee	B1	50-52	7000	18.94	63122.88	6541.79	0.01	2.39	2.57	1.8E+05	17.99	105%
I-10 & Chaffee	B1	50-52	8000	20.87	62493.29	6021.86	0.02	2.39	2.57	1.8E+05	17.99	116%
I-10 & Chaffee	B1	50-52	9000	23.80	27551.25	6207.60	0.06	2.39	2.57	1.8E+05	17.99	132%
I-10 & Chattee	EB3	52-55	1000	3.88	320500.93	39926.09	10.76	2.44	2.67	1.8E+05	17.99	22%
I-10 & Chaffee	EB3	52-55	2000	6.48	318125.30	16441.82	0.33	2.44	2.67	1.8E+05	17.99	36%
I-10 & Chaffee	EB3	52-55	3000	8.00	317426.58	13150.13	0.08	2.44	2.67	1.8E+05	17.99	44%
I-10 & Chaffee	EB3	52-55	4000	10.19	31//06.0/	13057.23	0.05	2.44	2.67	1.8E+05	17.99	57%
I-10 & Chaffee	EB3	52-55	5000	11.68	319592.60	12083.08	0.03	2.44	2.67	1.8E+05	17.99	720/
1-10 & Chaffee	EDD	52-55	7000	12.12	21052272	0162 76	0.02	2.44	2.07	1.86+05	17.99	73%
1-10 & Chaffee	EDS	52-55	2000	15.91	217775 04	9102.70	0.02	2.44	2.07	1.85+05	17.99	9.40/
I-10 & Chaffee	EB3	52-55	9000	17.15	317775 0/	7873 77	0.01	2.44	2.07	1.85+05	17.99	04%
I-10 & Chaffee	EB3	52-55	10000	19.06	2178/5 81	6545.66	0.01	2.44	2.07	1.85+05	17.99	106%
I-10 & Chaffee	FB3	52-55	11000	20.57	317566 33	6028.03	0.01	2.44	2.67	1.8E+05	17.99	114%
I-10 & Chaffee	EB3	52-55	12000	21.91	322666.95	5657.48	0.01	2 44	2.67	1.8E+05	17.99	122%
I-10 & Chaffee	FB3	52-55	13000	29.71	318474 66	7248 78	0.23	2.44	2.67	1.8E+05	17.99	165%
I-10 & Chaffee	EB3	52-55	14000	30.42	43739.61	9524.14	0.56	2.44	2.67	1.8E+05	17.99	169%
I-10 & Chaffee	North of I-10	54-56	1000	2.79	74208.43	81351.13	135.83	2.41	2.55	8.0E+05	62.81	4%
I-10 & Chaffee	North of I-10	54-56	2000	3.72	73383.53	53886.22	7.14	2.41	2.55	8.0E+05	62.81	6%
I-10 & Chaffee	North of I-10	54-56	3000	5.98	73512.92	30170.16	1.00	2.41	2.55	8.0E+05	62.81	10%
I-10 & Chaffee	North of I-10	54-56	4000	7.36	73755.54	24046.66	0.25	2.41	2.55	8.0E+05	62.81	12%
I-10 & Chaffee	North of I-10	54-56	5000	9.09	74418.69	22164.84	0.14	2.41	2.55	8.0E+05	62.81	14%
I-10 & Chaffee	North of I-10	54-56	6000	12.73	74208.43	17888.70	0.06	2.41	2.55	8.0E+05	62.81	20%
I-10 & Chaffee	North of I-10	54-56	7000	13.63	73739.37	15702.60	0.04	2.41	2.55	8.0E+05	62.81	22%
I-10 & Chaffee	North of I-10	54-56	8000	18.20	73884.94	14239.19	0.03	2.41	2.55	8.0E+05	62.81	29%
I-10 & Chaffee	North of I-10	54-56	9000	17.27	74176.08	11692.75	0.02	2.41	2.55	8.0E+05	62.81	28%
I-10 & Chaffee	North of I-10	54-56	10000	20.23	73868.76	10770.29	0.02	2.41	2.55	8.0E+05	62.81	32%
I-10 & Chaffee	North of I-10	54-56	11000	21.06	73836.41	8243.16	0.02	2.41	2.55	8.0E+05	62.81	34%
I-10 & Chaffee	North of I-10	54-56	12000	25.36	56125.38	7344.33	0.04	2.41	2.55	8.0E+05	62.81	40%
I-10 & Chaffee	EB3	60-63	1000	3.87	1148837.00	25061.89	16.60	2.33	2.53	2.5E+05	17.99	22%
I-10 & Chaffee	EB3	60-63	2000	7.04	1151366.00	14908.07	0.13	2.33	2.53	2.5E+05	17.99	39%
I-10 & Chattee	EB3	60-63	3000	8.48	1165021.00	12250.43	0.07	2.33	2.53	2.5E+05	17.99	47%
I-10 & Chattee	EB3	60-63	4000	13.58	1138469.00	11456.16	0.05	2.33	2.53	2.5E+05	17.99	76%
I-10 & Chaffee	EB3	60-63	5000	11.65	1166033.00	9018.35	0.04	2.33	2.53	2.5E+05	17.99	65%
I-10 & Chaffee	EB3	60-63	5000	12.63	1152883.00	/341.05	0.03	2.33	2.55	2.5E+05	17.99	70%
1-10 & Chaffee	EDD	60 62	2000	13.50	1151619.00	E 920 E2	0.03	2.33	2.55	2.5E+05	17.99	75%
1-10 & Chaffee	EDD	60.63	0000	14.00	1152577.00	5025.32	0.03	2.55	2.55	2.32+03	17.55	76/0
1-10 & Chaffee	EDD	60 62	9000	10.00	1151500.00	4592 10	0.03	2.33	2.55	2.5E+05	17.99	09% 1110/
I-10 & Chaffee	EB3	60-63	11000	34.05	1152377.00	12763.36	0.08	2.33	2.55	2.32+03	17.99	180%
I-10 & Chaffee	EB3	60-63	12000	40.45	1149343.00	19675 22	1 51	2.33	2.55	2.5E+05	17.99	225%
I-10 & Chaffee	EB3	60-63	13000	41.63	237202.10	26606.03	2.60	2.33	2.53	2.5E+05	17.99	231%
I-10 & Chaffee	North of I-10	47-49	1000	3 91	334310.94	30478.46	4 28	2 32	2 35	2 0E+06	13.94	28%
I-10 & Chaffoo	North of L10	47-40	2000	5.03	335100 12	10162.97	0.16	2.32	2.35	2.02.00	13.04	13%
1 10 & Chaffer	North of L10	47-45	2000	5.55	333130.12	15102.07	0.10	2.52	2.55	2.01+00	12.04	43/0
-10 & Chartee	NOTULOI 1-10	47-49	5000	0.99	336207.28	10/30.03	0.07	2.52	2.35	2.UE+U0	13.94	50%
I-10 & Chatfee	North of I-10	47-49	4000	8.06	334017.87	15381.07	0.05	2.32	2.35	2.0E+06	13.94	58%
I-10 & Chaffee	North of I-10	47-49	5000	9.17	334384.20	14380.52	0.03	2.32	2.35	2.0E+06	13.94	66%
I-10 & Chaffee	North of I-10	47-49	6000	10.45	334457.47	14252.48	0.03	2.32	2.35	2.0E+06	13.94	75%

I-10 & Chaffee	North of I-10	47-49	7000	11.54	338267.28	12951.04	0.02	2.32	2.35	2.0E+06	13.94	83%
I-10 & Chaffee	North of I-10	47-49	8000	12 60	334457 47	14491 32	0.02	2 32	2 35	2 0E+06	13 94	90%
1 10 & Chaffoo	North of L10	47.40	0000	14.49	224284 20	11/21 /5	0.02	2.02	2.00	2.05+06	12.04	104%
1-10 & Chaffee	North of L10	47-45	10000	16.26	224001 14	0062.52	0.02	2.32	2.55	2.00100	12.04	1170/
I-10 & Chaffee	North of I-10	47-49	10000	10.30	334091.14	9962.52	0.02	2.32	2.35	2.0E+06	13.94	117%
I-10 & Chattee	North of I-10	47-49	11000	17.15	334091.14	9803.76	0.02	2.32	2.35	2.0E+06	13.94	123%
I-10 & Chaffee	North of I-10	47-49	12000	18.01	337534.62	8047.98	0.03	2.32	2.35	2.0E+06	13.94	129%
I-10 & Chaffee	North of I-10	47-49	13000	18.63	334384.20	7849.31	0.12	2.32	2.35	2.0E+06	13.94	134%
I-10 & Chaffee	North of I-10	47-49	14000	25.36	252912.85	11511.14	0.74	2.32	2.35	2.0E+06	13.94	182%
I-10 & Chaffee	North of I-10	60-62	1000	6.91	331729.21	27031.99	11.51	2.38	2.64	2.5E+05	62.81	11%
I-10 & Chaffee	North of I-10	60-62	2000	13.14	328697.08	17723.97	0.68	2.38	2.64	2.5E+05	62.81	21%
I-10 & Chaffee	North of I-10	60-62	3000	24.13	328119.53	12121.04	1.11	2.38	2.64	2.5E+05	62.81	38%
I-10 & Chaffee	North of I-10	60-62	4000	32.56	328841 47	151/0 37	2 10	2.30	2.64	2.52+05	62.81	52%
1-10 & Chaffee	North of L10	60.62	4000	20.25	77102.69	16471 12	2.10	2.30	2.04	2.50,05	62.01	52/0
1-10 & Chantee	North of 1-10	00-02	5000	36.35	77102.68	16471.12	2.60	2.56	2.64	2.5E+05	02.61	61%
1-4 & 192	Pier 2	85-87	1000	4.18	379041.60	66269.85	392.84	2.43	2.44	1.0E+07	36.45	11%
1-4 & 192	Pier 2	85-87	2000	8.71	385/42.89	60501.20	8.25	2.43	2.44	1.0E+07	30.45	24%
1-4 & 192	Pier 2	85-87	3000	17.24	381038.35	45771.33	1.54	2.43	2.44	1.0E+07	30.45	47%
1-4 & 192	Pier 2	05-07	4000	21.89	301009.05	49800.05	0.97	2.45	2.44	1.0E+07	30.45	60%
1-4 & 192	Pier 2	85-87	5000	24.05	382140.95	45369.64	0.68	2.43	2.44	1.0E+07	30.45	56%
1-4 & 192	Pier 2	05-07	7000	27.05	300913.0Z	40337.99	0.71	2.45	2.44	1.0E+07	30.45	74%
1-4 & 192	Pier 2	05-07	7000	29.55	201009.05	30010.02	0.51	2.45	2.44	1.0E+07	30.45	81%
1-4 & 192	Pier 2	00-07	8000	31.00	301030.33 201000 CE	21092 02	0.46	2.45	2.44	1.0E+07	30.45 26.45	6/% 101%
1-4 & 192	Pier 2	05-07	10000	40.00	201005.03	22225 05	0.52	2.45	2.44	1.02+07	30.45	1101/0
1-4 & 192	Pier 2	05-07	110000	40.08	361334.39	322/3.63	0.55	2.45	2.44	1.0E+07	30.45	1249/
1-4 & 192	Pier 2	85-87	12000	45.19	381889.05	35988.20	0.64	2.43	2.44	1.0E+07	30.45	124%
1-4 & 192	Pier 2	85-87	12000	51.33	382140.95	36420.69	0.69	2.43	2.44	1.0E+07	30.45	141%
1-4 & 192	Pier 2	85-87	13000	53.77	381889.65	36698.91	0.75	2.43	2.44	1.0E+07	36.45	148%
1-4 & 192	Pier 2	85-87	14000	58.12	382559.78	40449.82	0.88	2.43	2.44	1.0E+07	36.45	159%
1-4 & 192	Pier Z	60.62	1000	58.30	20941.52	45007.80	0.79	2.43	2.44	1.0E+07	30.45	100%
1-4 & 192	Pier 7 (2)	60-62	2000	0.00 14.2E	204462.50	45007.89	42.07	2.49	2.60	1.0E+06	03.23	10%
1-4 & 192	Pier 7 (2)	60 62	2000	20.70	204424.31	20667.20	2.41	2.45	2.00	1.02+00	03.23	26%
1-4 & 192	Pier 7 (2)	00-02	3000	29.70	204000.95	32007.32	0.56	2.49	2.60	1.0E+06	03.23	30%
1-4 & 192	Pier 7 (2)	60-62	4000	30.95	260477.01	29400.85	0.26	2.49	2.60	1.0E+06	83.23	44%
1-4 & 192	Pier 7 (2)	60-62	5000	44.67	267036.83	27510.31	0.19	2.49	2.60	1.0E+06	83.23	54%
1-4 & 192	Pier 7 (2)	60-62	5000	51.03	263960.10	23/18.58	0.21	2.49	2.60	1.0E+06	83.23	61%
1-4 & 192	Pier 7 (2)	60-62	7000	57.17	265759.70	232/3.51	0.38	2.49	2.60	1.0E+06	83.23	69%
1-4 & 192	Pier 7 (2)	60-62	8000	63.30	265005.03	25157.50	0.65	2.49	2.60	1.0E+06	83.23	76%
1-4 & 192	Pier 7 (2)	70 72	9000	4 75	62407.99	25608.18	0.84	2.49	2.60	1.0E+06	47.02	10%
1-4 & 192	Pier 7	70-72	2000	4.75	62497.88	23545.09	440.44	2.45	2.40	1.0E+06	47.95	10%
1-4 & 192	Pier 7	70-72	2000	14.42	61409.00	23406.00	0.56	2.45	2.40	1.0E+06	47.95	23%
1-4 & 192	Pier 7	70-72	4000	24.42	61722.10	19226 65	0.10	2.45	2.40	1.02+00	47.55	50%
1-4 & 192	Pier 7	70-72	4000 E000	24.23	61725.10	14502 16	0.08	2.45	2.40	1.02+00	47.55	51%
1-4 & 192	Pier 7	70-72	6000	20.70	62103.18	13604 72	0.03	2.45	2.40	1.02+00	47.93	60%
1-4 & 192	Pier 7	70-72	7000	39.19	62565.03	11088 1/	0.04	2.45	2.40	1.02+00	47.93	80%
1-4 & 192	Pier 7	70-72	8000	38 77	62144.01	10976 10	0.03	2.45	2.40	1.02+00	47.93	81%
1-4 & 192	Pier 7	70-72	9000	37.03	20561.28	11287.46	0.03	2.43	2.40	1.02+06	47.55	70%
I-4 & 192	Pier 7	85-87	1000	4 64	134506 91	55241 54	251 22	2.45	2.40	1 0F+07	36.45	13%
1-4 & 192	Pier 7	85-87	2000	7 57	133164.46	52358 56	15 45	2.40	2.42	1.0E+07	36.45	21%
1-4 & 192	Pier 7	85-87	3000	14 28	133193.65	45880.46	3 71	2.40	2.42	1.0E+07	36.45	39%
1-4 & 192	Pier 7	85-87	4000	17.88	133573.03	49531 77	1 99	2.40	2.42	1.0E+07	36.45	49%
1-4 & 192	Pier 7	85-87	5000	21 53	134477 72	42453 17	1.05	2.40	2.42	1.0E+07	36.45	59%
1-4 & 192	Pier 7	85-87	6000	24.55	132755 80	40551.46	1.00	2.40	2.42	1.0E+07	36.45	67%
1-4 & 192	Pier 7	85-87	7000	28.00	134039 97	35278 36	0.44	2.40	2.42	1.0E+07	36.45	77%
1-4 & 192	Pier 7	85-87	8000	20.00	54077 00	57584 77	0.44	2.40	2.42	1.0E+07	36.45	76%
1-4 0(132	FICE /	55-07	0000	21.10	54077.05	J/J04.//	0.00	2.40	2.42	1.01 10/	30.43	/0/0

I-4 & 192	P6	75-77	1000	7.42	149467.93	50386.84	10944.66	2.47	2.48	2.5E+06	65.69	11%
I-4 & 192	P6	75-77	2000	15.11	147263.68	42667.59	1.05	2.47	2.48	2.5E+06	65.69	23%
I-4 & 192	P6	75-77	3000	31.21	149630.01	29401.00	0.24	2.47	2.48	2.5E+06	65.69	48%
I-4 & 192	P6	75-77	4000	41.41	147069.19	24547.80	0.16	2.47	2.48	2.5E+06	65.69	63%
I-4 & 192	P6	75-77	5000	45.21	148527.88	19191.60	0.10	2.47	2.48	2.5E+06	65.69	69%
I-4 & 192	P6	75-77	6000	52.65	147847.16	17780.33	0.11	2.47	2.48	2.5E+06	65.69	80%
I-4 & 192	P6	75-77	7000	60.22	146485.71	18719.00	0.12	2.47	2.48	2.5E+06	65.69	92%
I-4 & 192	P6	75-77	8000	67.30	150278.32	21500.90	0.16	2.47	2.48	2.5E+06	65.69	102%
I-4 & 192	P6	75-77	9000	67.51	68850.55	21232.91	0.21	2.47	2.48	2.5E+06	65.69	103%
I-4 & 192	Pier 8	55-57	1000	4.63	411386.45	40000.74	32.96	2.35	2.46	5.0E+05	43.02	11%
I-4 & 192	Pier 8	55-57	2000	8.41	411837.53	32765.30	1.00	2.35	2.46	5.0E+05	43.02	20%
I-4 & 192	Pier 8	55-57	3000	16.90	412469.04	27332.70	0.30	2.35	2.46	5.0E+05	43.02	39%
I-4 & 192	Pier 8	55-57	4000	20.51	416167.91	23529.62	0.20	2.35	2.46	5.0E+05	43.02	48%
I-4 & 192	Pier 8	55-57	5000	25.21	412378.83	18198.69	0.19	2.35	2.46	5.0E+05	43.02	59%
I-4 & 192	Pier 8	55-57	6000	30.43	411837.53	17491.61	0.26	2.35	2.46	5.0E+05	43.02	71%
I-4 & 192	Pier 8	55-57	7000	35.17	411296.23	18184.45	0.36	2.35	2.46	5.0E+05	43.02	82%
I-4 & 192	Pier 8	55-57	8000	40.03	415536.40	19587.68	0.50	2.35	2.46	5.0E+05	43.02	93%
I-4 & 192	Pier 8	55-57	9000	44.82	411206.01	21047.27	0.66	2.35	2.46	5.0E+05	43.02	104%
I-4 & 192	Pier 8	55-57	10000	48.28	217872.43	21664.99	0.80	2.35	2.46	5.0E+05	43.02	112%
I-4 & 192	Pier 6	60-62	1000	5.48	193349.51	33380.30	11.03	2.33	2.42	1.0E+06	52.96	10%
I-4 & 192	Pier 6	60-62	2000	10.95	194274.43	30920.07	0.72	2.33	2.42	1.0E+06	52.96	21%
I-4 & 192	Pier 6	60-62	3000	23.82	191709.89	18691.98	0.35	2.33	2.42	1.0E+06	52.96	45%
I-4 & 192	Pier 6	60-62	4000	27.18	191247.43	15047.31	0.39	2.33	2.42	1.0E+06	52.96	51%
I-4 & 192	Pier 6	60-62	5000	34.56	193896.05	17092.55	0.75	2.33	2.42	1.0E+06	52.96	65%
I-4 & 192	Pier 6	60-62	6000	37.69	87068.24	14909.24	0.65	2.33	2.42	1.0E+06	52.96	71%
417 &	EB2	55-57	1000	5.06	221221.63	32353.81	11.45	2.34	2.37	1.0E+06	54.57	9%
417 &	EB2	55-57	2000	9.43	224526.35	21656.13	0.45	2.34	2.37	1.0E+06	54.57	17%
417 &	EB2	55-57	3000	17.79	221707.62	15423.20	0.17	2.34	2.37	1.0E+06	54.57	33%
417 &	EB2	55-57	4000	21.60	221513.22	11618.29	0.12	2.34	2.37	1.0E+06	54.57	40%
417 &	EB2	55-57	5000	24.36	221416.03	9210.32	0.20	2.34	2.37	1.0E+06	54.57	45%
417 &	EB2	55-57	6000	29.97	135541.99	9262.72	0.78	2.34	2.37	1.0E+06	54.57	55%
417 &	EB1	29-31	1000	3.75	354344.25	31233.10	32.94	2.39	2.67	2.0E+05	328.51	1%
417 &	EB1	29-31	2000	7.38	352949.20	22756.31	0.24	2.39	2.67	2.0E+05	328.51	2%
417 &	EB1	29-31	3000	9.96	356436.84	20385.73	0.09	2.39	2.67	2.0E+05	328.51	3%
417 &	EB1	29-31	4000	11.67	352484.18	19626.60	0.09	2.39	2.67	2.0E+05	328.51	4%
417 &	EB1	29-31	5000	13.45	352406.68	19387.90	0.16	2.39	2.67	2.0E+05	328.51	4%
417 &	EB1	29-31	6000	15.41	353336.71	18597.24	0.23	2.39	2.67	2.0E+05	328.51	5%
417 &	EB1	29-31	7000	17.07	352561.68	18310.31	0.27	2.39	2.67	2.0E+05	328.51	5%
417 &	EB1	29-31	8000	19.56	356591.84	19595.71	0.35	2.39	2.67	2.0E+05	328.51	6%
417 &	EB1	29-31	9000	23.86	352639.18	22415.89	0.53	2.39	2.67	2.0E+05	328.51	7%
417 &	EB1	29-31	10000	27.38	352484.18	27391.23	1.03	2.39	2.67	2.0E+05	328.51	8%
417 &	EB1	29-31	11000	35.19	283816.42	34948.47	1.82	2.39	2.67	2.0E+05	328.51	11%
417 &	EB1	23-25	1000	2.30	228004.66	141731.60	41.58	2.27	2.28	1.0E+07	328.51	1%
417 &	EB1	23-25	2000	3.92	226221.82	51735.81	1.54	2.27	2.28	1.0E+07	328.51	1%
417 &	EB1	23-25	3000	4.83	226221.82	47076.78	0.73	2.27	2.28	1.0E+07	328.51	1%
417 &	EB1	23-25	4000	5.77	226568.49	47972.75	0.38	2.27	2.28	1.0E+07	328.51	2%
417 &	EB1	23-25	5000	6.96	226667.53	44776.30	0.28	2.27	2.28	1.0E+07	328.51	2%
417 &	EB1	23-25	6000	7.91	227014.19	39805.75	0.22	2.27	2.28	1.0E+07	328.51	2%
417 &	EB1	23-25	7000	8.63	225875.16	38865.35	0.20	2.27	2.28	1.0E+07	328.51	3%
417 &	EB1	23-25	8000	9.46	225924.68	38152.95	0.16	2.27	2.28	1.0E+07	328.51	3%
417 &	FB1	23-25	9000	11 42	225776 11	41067.88	0.18	2 27	2.20	1.0E+07	328 51	3%
417 &	EB1	23-25	10000	13.06	228499.89	31946.38	0.19	2.27	2.28	1.0E+07	328.51	4%
417 &	EB1	23-25	11000	14.77	225974.21	36766.81	0.37	2.27	2.28	1.0E+07	328.51	4%
417 &	FB1	23-25	12000	23 32	225875 16	28128.09	0.54	2 27	2.28	1 0F+07	328 51	7%
417 &	FB1	23-25	13000	22.52	225578.02	31295 33	0.83	2.27	2.20	1.0E+07	328 51	7%
417 &	FB1	23-25	14000	37 17	226172 30	28056 17	0.86	2.27	2.20	1.0E+07	328 51	11%
417 &	EB1	23-25	15000	39.91	183186.19	35820.92	1.21	2.27	2.28	1.0E+07	328.51	12%

417 & EB1 58-61 1000 65.00 323490.69 48058.29 13.31 1.96 2.06 2.54-06 2.14-61 3% 417 & EB1 58-61 3000 12.64 31931.27 33220.06 5.77 1.96 2.06 2.54-06 2.14-61 10% 417 & EB1 58-61 4000 30.05 322386.68 352710 7.09 1.96 2.06 2.54-06 2.14-61 18% 417 & EB1 58-61 4000 31.32 31914.28 34852.64 7.09 1.96 2.06 2.54-06 2.14-61 18% 417 & EB1 20-22 2000 40.8 325730.06 4190.70 1.05 2.25 2.34 1.06-08 328.51 1.84 417 & EB1 20-22 4000 2.63 392553.88 40476.13 1.63 2.25 2.34 1.06-08 328.51 1.84 417 & EB1 20-22 6000 40.05													
417 & EB1 S8-61 2000 12.64 31991.427 40893.30 1.09 1.06 2.06 2.54-06 2.14.61 6% 417 & EB1 S8-61 4000 30.05 33228.68 3544.47 7.49 1.96 2.06 2.54-06 2.14.61 14% 417 & EB1 S8-61 6000 39.52 1324.28 3452.64 7.09 1.96 2.06 2.54-06 2.14.61 14% 417 & EB1 2.86-1 2000 9.33 93550.16 577 1.96 2.06 2.54-06 2.14.61 18% 417 & EB1 20-22 0000 2.53 2.95550.58 4407713 1.16 2.25 2.34 1.06+08 328.51 3% 417 & EB1 20-22 0000 2.33 93536.60 353.23 2.25 2.34 1.06+08 328.51 17% 417 & EB1 20-22 0000 92.33 93245.60 93778.91 <	417 &	EB1	58-61	1000	6.50	323490.69	48058.29	13.31	1.96	2.06	2.5E+06	214.61	3%
417 & EB1 S8-61 3000 21.85 31963.37 3322.06 5.77 1.96 2.06 2.5F+06 214.61 1.14% 417 & EB1 S8-61 5000 30.52 3228.68 38424.47 7.09 1.96 2.06 2.5F+06 214.61 18% 417 & EB1 2.56+10 214.61 18% 2.06 2.5F+06 214.61 18% 417 & EB1 2.022 1000 4.91 32550.16 5.777 1.05 2.25 2.34 1.06+08 328.51 13% 417 & EB1 2.022 2.000 1.93 2.0553.05 4.4857.13 113 2.25 2.34 1.06+08 328.51 13% 417 & EB1 2.022 6000 40.05 323.25 1.36 2.25 2.34 1.06+08 328.51 1.36 417 & EB1 2.022 6000 82.33 2.25 1.34 1.06+08 328.51 2.25 3.44	417 &	EB1	58-61	2000	12.64	319914.27	40893.30	1.09	1.96	2.06	2.5E+06	214.61	6%
417 & EB1 58-61 4000 30.05 32238.88 35444.07 7.49 1.96 2.06 2.55-66 214.61 1.8% 417 & EB1 58-61 5000 39.52 11224.82 6982.710 7.69 1.96 2.06 2.55-66 214.61 1.8% 417 & EB1 2.02.2 1000 4.91 35560.16 7.760.4 1.05.9 2.25 2.34 1.06-69 328.51 1.3% 417 & EB1 2.02.2 2.000 9.63 92579.05 49107.01 1.63 2.25 2.34 1.06-69 328.51 1.3% 417 & EB1 2.02.2 5000 32.93 925650.65 324.51 1.44 2.25 2.34 1.06-69 328.51 1.2% 417 & EB1 2.02.2 7000 47.61 92497.55 3.636.11 1.86 2.25 2.34 1.06-69 328.51 1.2% 417 & EB1 2.02.2 10000 92.79 <td>417 &</td> <td>EB1</td> <td>58-61</td> <td>3000</td> <td>21.85</td> <td>319633.77</td> <td>33220.06</td> <td>5.77</td> <td>1.96</td> <td>2.06</td> <td>2.5E+06</td> <td>214.61</td> <td>10%</td>	417 &	EB1	58-61	3000	21.85	319633.77	33220.06	5.77	1.96	2.06	2.5E+06	214.61	10%
417 & EB1 58-61 5000 39.12 319124 28 34852.64 7.69 1.96 2.06 2.55-06 214.61 18% 417 & EB1 20-22 1000 4.91 935680.16 5737.604 10.59 2.25 2.34 1.06-08 328.51 1% 417 & EB1 20-22 3000 19.33 926550.38 44475.13 1.79 2.25 2.34 1.06-08 328.51 6% 417 & EB1 20-22 5000 2.43.9 92530.35 44077.64 1.23 2.25 2.34 1.06-08 328.51 1.0% 417 & EB1 20-22 7000 4.61 92817.36 2.35 1.34 1.26 2.34 1.06-08 328.51 1.0% 417 & EB1 20-22 8000 55.10 92497.55 63364.11 1.86 2.25 2.34 1.06-08 328.51 1.3% 417 & EB1 20-22 10000 92.79	417 &	EB1	58-61	4000	30.05	322368.68	35444.07	7.49	1.96	2.06	2.5E+06	214.61	14%
417 & EB1 58-61 6000 49 52 19264 42 69827 10 7.69 196 2.06 2.14 61 18% 417 & EB1 20-22 2000 9.68 925790.66 49190.70 1.05 2.25 2.34 1.0E+08 328.51 3% 417 & EB1 20-22 4000 12.33 926550.58 40478.13 1.63 2.25 2.34 1.0E+08 328.51 8% 417 & EB1 20-22 6000 40.05 932333.30 4776.42 1.74 2.25 2.34 1.0E+08 328.51 10% 417 & EB1 20-22 5000 40.05 93245.60 9776.91 3.23 2.25 2.34 1.0E+08 328.51 12% 417 & EB1 20-22 1000 93.78 92755.93 6.66275.01 1255.41 2.25 2.34 1.0E+08 328.51 12% 417 & EB1 20-22 11000 93.78 92756.93	417 &	EB1	58-61	5000	39.12	319142.89	34852.64	7.09	1.96	2.06	2.5E+06	214.61	18%
417 & EB1 20-22 1000 4.91 935680.16 57376.04 10.95 2.25 2.34 1.08*08 328.51 1% 417 & EB1 20-22 3000 19.33 926550.58 44078.13 1.63 2.25 2.34 1.08*08 328.51 0% 417 & EB1 20-22 5000 32.23 925333.30 47676.42 1.74 2.25 2.34 1.08*08 328.51 10% 417 & EB1 20-22 7000 47.61 923124.50 63364.11 1.86 2.25 2.34 1.08*08 328.51 12% 417 & EB1 20-22 7000 47.61 92417.55 63364.11 1.86 2.25 2.34 1.08*08 328.51 12% 417 & EB1 20-22 1.000 92.79 927564.94 462751.50 1.00*10 18057.41 2.25 2.34 1.08*08 32.31 23% 417 & EB1 20-22 1.000 <td>417 &</td> <td>EB1</td> <td>58-61</td> <td>6000</td> <td>39.52</td> <td>19284.62</td> <td>69827.10</td> <td>7.69</td> <td>1.96</td> <td>2.06</td> <td>2.5E+06</td> <td>214.61</td> <td>18%</td>	417 &	EB1	58-61	6000	39.52	19284.62	69827.10	7.69	1.96	2.06	2.5E+06	214.61	18%
417 & EB1 20-22 2000 9.68 925793.06 44190.70 1.07 2.25 2.34 1.06+08 328.51 9% 417 & EB1 20-22 4000 26.33 926550.58 40477.13 1.63 2.25 2.34 1.06+08 328.51 0% 417 & EB1 20-22 6000 40.05 932435.0 977.81 3.22 2.5 2.34 1.06+08 328.51 1.0% 417 & EB1 20-22 6000 40.05 932425.60 99778.91 3.22 2.5 2.34 1.06+08 328.51 1.2% 417 & EB1 20-22 8000 52.51 927764.38 403228.60 13679.471 2.5 2.34 1.06+08 328.51 23% 417 & EB1 20-22 1000 32.75 927564.38 40324.60 1.06+08 328.51 23% 417 & EB1 20-22 1.000 32.76 255911.40 3438.44 42.62	417 &	EB1	20-22	1000	4.91	935680.16	57376.04	10.59	2.25	2.34	1.0E+08	328.51	1%
417 & EB1 20-22 3000 19.33 926550.58 4487.13 1.63 2.25 2.34 1.06+08 328.51 6% 417 & EB1 20-22 5000 32.33 926550.58 40476.1 1.64 32.85.1 10% 417 & EB1 20-22 6000 40.05 933245.6 63964.1 1.86 2.25 2.34 1.06+08 32.85.1 17% 417 & EB1 20-22 7000 47.61 92497.55 63364.11 1.86 2.25 2.34 1.06+08 32.85.1 17% 417 & EB1 20-22 9000 52.13 9107564.84 4627515.0 1.806 2.25 2.34 1.06+08 32.85.1 27% 417 & EB1 20-22 1.1000 92.7564.94 462751.00 1.106+10 32.85.1 27% 417 & EB1 20-22 1.1000 127.76 925941.94 48429.42 2.84 1.06+08 32.85.1 39%	417 &	EB1	20-22	2000	9.68	925739.06	49190.70	1.05	2.25	2.34	1.0E+08	328.51	3%
417 & EB1 20-22 4000 26.33 926550.58 40478.13 1.63 2.25 2.34 1.0F-08 328.51 10% 417 & EB1 20-22 6000 40.05 933245.60 99778.91 1.32 2.25 2.34 1.0F-08 328.51 12% 417 & EB1 20-22 6000 55.10 924927.55 63364.11 1.86 2.25 2.34 1.0F-08 328.51 17% 417 & EB1 20-22 10000 92.79 927564.38 4627515.00 18054.1 2.25 2.34 1.0F-08 328.51 28% 417 & EB1 20-22 12000 110.49 93265.97 1.47419.40 4.82 2.25 2.34 1.0F-08 328.51 39% 417 & EB1 20-22 12000 127.61 650431.61 77693.97 2.26 2.24 1.0F-08 328.51 39% 447 & EB1 20-22 1.0400 9.78 2	417 &	EB1	20-22	3000	19.33	926550.58	44857.13	1.79	2.25	2.34	1.0E+08	328.51	6%
417 & EB1 20-22 5000 32.93 92333.30 47676.42 1.74 2.25 2.34 1.0F-08 3228.51 12% 417 & EB1 20-22 7000 47.61 928173.62 45129.98 1.36 2.25 2.34 1.0F-08 328.51 12% 417 & EB1 20-22 8000 55.10 92497.95 6336.41 1.86 2.25 2.34 1.0F-08 328.51 25% 417 & EB1 20-22 9000 82.33 910928.86 403228.00 1.8794.71 2.25 2.34 1.0F-08 328.51 28% 417 & EB1 20-22 1.0000 127.76 92594.19 84389.48 2.87 2.25 2.34 1.0F-08 328.51 39% 1430 EB1 20-22 1.3000 127.6 20593.71 30318.52 1.224 2.41 2.64 5.0F-05 58.89 68% 440 Sceela Pier2 80.81 3000 4	417 &	EB1	20-22	4000	26.33	926550.58	40478.13	1.63	2.25	2.34	1.0E+08	328.51	8%
417 & EB1 20-22 6000 40.05 933245.60 99778.91 3.23 2.25 2.34 1.0F-08 328.51 12% 417 & EB1 20-22 8000 55.10 924927.55 63364.11 1.86 2.25 2.34 1.0F-08 328.51 12% 417 & EB1 20-22 9000 82.33 910928.64 403226.00 136794.71 2.25 2.34 1.0F-08 328.51 25% 417 & EB1 20-22 11000 93.78 925754.38 4627515.00 180554.1 2.25 2.34 1.0F-08 328.51 29% 417 & EB1 20-22 12000 127.76 925941.34 83484 2.87 2.25 2.34 1.0F-08 328.51 39% 417 & EB1 20-22 1.000 39.78 2.0798.17 3021552 1.24 2.41 2.64 5.0F-05 58.89 68% 4405ccela Pier 2 80-81 3000	417 &	EB1	20-22	5000	32.93	925333.30	47676.42	1.74	2.25	2.34	1.0E+08	328.51	10%
417 & EB1 20-22 7000 47.61 928173.62 45129.98 1.36 2.25 2.34 1.06+03 328.51 14% 417 & EB1 20-22 9000 82.33 910928.86 403226.00 180554.11 1.26 2.25 2.34 1.06+03 328.51 25% 417 & EB1 20-22 10000 93.78 928579.38 66021.52 2.07 2.25 2.34 1.06+03 328.51 29% 417 & EB1 20-22 13000 127.76 92594.134 83489.48 2.87 2.25 2.34 1.06+03 328.51 39% 440 Sceola Pier 2 80-81 1000 39.78 20799.7 2.66 2.25 2.34 1.06+03 328.51 39% 44&0 Sceola Pier 2 80-81 3000 47.04 20502.72 32130.58 0.98 2.44 2.64 5.06+05 58.89 87% 4&0 Sceola Pier 2 80-81 5000	417 &	EB1	20-22	6000	40.05	933245.60	99778.91	3.23	2.25	2.34	1.0E+08	328.51	12%
417 & EB1 20-22 8000 55.10 924927.55 63364.11 1.86 2.25 2.34 1.06+03 328.51 17% 417 & EB1 20-22 10000 92.79 927564.98 4627515.00 136794.71 2.25 2.34 1.06+03 328.51 28% 417 & EB1 20-22 12000 110.84 932636.97 147419.40 4.82 2.25 2.34 1.06+03 328.51 29% 417 & EB1 20-22 12000 127.76 925941.44 8489.48 2.87 2.55 2.34 1.06+03 328.51 39% 440.50ceola Pier 2 80-81 1000 39.78 20798.97 2.66 2.25 2.34 1.06+03 328.51 39% 14&0.50ceola Pier 2 80-81 2000 47.04 20502.72 3213.51 2.66 2.25 2.34 1.06+05 58.89 6% 14&0.50ceola Pier 2 80-81 3000 47.0	417 &	EB1	20-22	7000	47.61	928173.62	45129.98	1.36	2.25	2.34	1.0E+08	328.51	14%
417 & EB1 20-22 9000 82.33 910928.86 4032286.00 136794.71 2.25 2.34 1.0E+08 328.51 25% 417 & EB1 20-22 11000 93.78 928579.38 66021.52 2.07 2.25 2.34 1.0E+08 328.51 29% 417 & EB1 20-22 12000 110.84 932656.97 14719.40 482 2.25 2.34 1.0E+08 328.51 39% 417 & EB1 20-22 14000 127.66 925941.94 83489.48 2.87 2.25 2.34 1.0E+08 328.51 39% 417 & EB1 20-22 14000 127.66 925941.91 30918.52 12.24 2.41 2.64 5.0E+05 58.89 68% 44&0sceola Pier 2 80-81 2000 51.42 20560.7.2 32130.58 0.92 2.41 2.64 5.0E+05 58.89 80% 48&0sceola Pier 2 80-81 6000 <td>417 &</td> <td>EB1</td> <td>20-22</td> <td>8000</td> <td>55.10</td> <td>924927.55</td> <td>63364.11</td> <td>1.86</td> <td>2.25</td> <td>2.34</td> <td>1.0E+08</td> <td>328.51</td> <td>17%</td>	417 &	EB1	20-22	8000	55.10	924927.55	63364.11	1.86	2.25	2.34	1.0E+08	328.51	17%
417 & EB1 20-22 10000 92.79 927564.98 4627515.00 18055.41 2.25 2.34 1.0E+08 328.51 28% 417 & EB1 20-22 12000 110.84 932636.97 147419.40 4.82 2.25 2.34 1.0E+08 328.51 34% 417 & EB1 20-22 12000 127.76 925941.94 83489.48 2.87 2.25 2.34 1.0E+08 328.51 39% 440.5ceola Pier 2 80-81 1000 39.78 207998.71 30309.45 2.12 2.41 2.64 5.0E+05 58.89 68% 4&0.5ceola Pier 2 80-81 3000 47.04 20562.72 3213.05.8 0.98 2.41 2.64 5.0E+05 58.89 97% 4&0.5ceola Pier 2 80-81 6000 61.02 205793.83 3325.21 2.41 2.64 5.0E+05 58.89 98% 4&0.5ceola Pier 2 80-81 6000	417 &	EB1	20-22	9000	82.33	910928.86	4032286.00	136794.71	2.25	2.34	1.0E+08	328.51	25%
417 & EB1 20-22 11000 93.78 928579.38 66021.52 2.07 2.25 2.34 1.0E+08 328.51 29% 417 & EB1 20-22 13000 127.76 925941.94 83489.48 2.87 2.25 2.34 1.0E+08 328.51 39% 447 & EB1 20-22 14000 129.61 650431.61 77693.97 2.26 2.34 1.0E+08 328.51 39% 14&Osceola Pier 2 80-81 2000 43.76 206054.79 30809.08 1.224 2.41 2.64 5.0E+05 58.89 74% 4&Osceola Pier 2 80-81 3000 47.04 205602.72 32130.58 0.92 2.41 2.64 5.0E+05 58.89 80% 14&Osceola Pier 2 80-81 6000 5.02 2.212.64 0.96 2.41 2.64 5.0E+05 58.89 104% 4&Osceola Pier 2 80-81 7000 5.1.1 20573.8	417 &	EB1	20-22	10000	92.79	927564.98	4627515.00	18055.41	2.25	2.34	1.0E+08	328.51	28%
417 & EB1 20-22 12000 110.84 932636.97 147419.40 4.82 2.25 2.34 1.06+08 328.51 39% 417 & EB1 20-22 14000 129.61 650431.61 77693.97 2.66 2.25 2.34 1.06+08 328.51 39% I4&Osceola Pier 2 80.81 1000 39.78 20798.71 30918.52 12.24 2.41 2.64 5.06+05 58.89 74% I4&Osceola Pier 2 80.81 2000 47.76 20560.72 2130.54.46 0.92 2.41 2.64 5.06+05 58.89 74% I4&Osceola Pier 2 80.81 4000 57.61 20573.34 32216.54 0.96 2.41 2.64 5.06+05 58.89 87% I4&Osceola Pier 2 80.81 7000 66.33 105920.66 34441.42 1.31 2.44 2.64 5.06+05 58.89 98% I4&Osceola Pier 2 75-76 1000 3.11 26625.40 75989.60 544.29 2.50 2.62 <td< td=""><td>417 &</td><td>EB1</td><td>20-22</td><td>11000</td><td>93.78</td><td>928579.38</td><td>66021.52</td><td>2.07</td><td>2.25</td><td>2.34</td><td>1.0E+08</td><td>328.51</td><td>29%</td></td<>	417 &	EB1	20-22	11000	93.78	928579.38	66021.52	2.07	2.25	2.34	1.0E+08	328.51	29%
417 & EB1 20-22 13000 127.76 925941.94 38489.48 2.87 2.25 2.34 1.06+08 328.51 39% I44Dosceola Pier 2 80-81 1000 39.78 207998.71 30918.52 12.24 2.41 2.64 5.06+05 58.89 68% I4&Osceola Pier 2 80-81 3000 43.76 206651.79 32130.58 0.98 2.41 2.64 5.06+05 58.89 80% I4&Osceola Pier 2 80-81 3000 47.04 20567.377 32134.46 0.92 2.41 2.64 5.06+05 58.89 80% I4&Osceola Pier 2 80-81 6000 51.61 205733.34 3216.54 0.96 2.41 2.64 5.06+05 58.89 80% I4&Osceola Pier 2 80-81 6000 61.02 207908.29 32458.78 1.09 2.41 2.64 5.06+05 58.89 104% I4&Osceola Pier 2 75-76 1000 3.11 26622.40 75989.60 544.29 2.50 2.62	417 &	EB1	20-22	12000	110.84	932636.97	147419.40	4.82	2.25	2.34	1.0E+08	328.51	34%
417 & EB1 20-22 14000 129:61 650431.61 776937 2.66 2.25 2.34 1.0E+08 328.51 39% I4&Osceola Pier 2 80-81 2000 43.76 206967.71 3090.90 1.24 2.41 2.64 5.0E+05 58.89 68% I4&Osceola Pier 2 80-81 3000 47.04 205607.72 32130.58 0.98 2.41 2.64 5.0E+05 58.89 80% I4&Osceola Pier 2 80-81 4000 51.42 205733.34 32216.84 0.96 2.41 2.64 5.0E+05 58.89 98% I4&Osceola Pier 2 80-81 6000 61.02 207908.29 2448.78 1.09 2.41 2.64 5.0E+05 58.89 104% I4&Osceola Pier 2 75-76 1000 3.11 2.6625.40 7544.29 2.50 2.62 1.0E+06 31.65 20% I4&Osceola Pier 2 75-76 0000	417 &	EB1	20-22	13000	127.76	925941.94	83489.48	2.87	2.25	2.34	1.0E+08	328.51	39%
H&Osceola Pier 2 80-81 1000 39.78 207998.71 30918.52 12.24 2.41 2.64 5.0E+05 58.89 68% H&Osceola Pier 2 80-81 2000 47.04 206054.79 30809.08 1.29 2.41 2.64 5.0E+05 58.89 80% H&Osceola Pier 2 80-81 4000 51.42 205738.34 2216.84 0.96 2.41 2.64 5.0E+05 58.89 98% H&Osceola Pier 2 80-81 6000 61.02 207908.29 32458.78 1.09 2.41 2.64 5.0E+05 58.89 104% H&Osceola Pier 2 80-81 6000 61.02 207908.29 32458.78 1.09 2.41 2.64 5.0E+05 58.89 104% H&Osceola Pier 2 75-76 1000 3.11 26280.69 3653.99 0.90 2.50 2.62 1.0E+06 31.65 10% H&Osceola Pier 2 75-76 5000 16.21 26370.72 3774.460 0.13 2.50 2.62 <td< td=""><td>417 &</td><td>EB1</td><td>20-22</td><td>14000</td><td>129.61</td><td>650431.61</td><td>77693.97</td><td>2.66</td><td>2.25</td><td>2.34</td><td>1.0E+08</td><td>328.51</td><td>39%</td></td<>	417 &	EB1	20-22	14000	129.61	650431.61	77693.97	2.66	2.25	2.34	1.0E+08	328.51	39%
I4&Osceola Pier 2 80-81 2000 43.76 20696.79 30809.08 1.29 2.41 2.64 5.0e+05 58.89 74% I4&Osceola Pier 2 80-81 4000 51.42 205873.97 32134.46 0.92 2.41 2.64 5.0e+05 58.89 80% I4&Osceola Pier 2 80-81 5000 57.61 207908.29 32458.78 1.09 2.41 2.64 5.0e+05 58.89 98% I4&Osceola Pier 2 80-81 6000 61.02 207908.29 32458.78 1.09 2.41 2.64 5.0e+05 58.89 103% I4&Osceola Pier 2 75.76 1000 61.12 26280.69 38653.99 0.90 2.50 2.62 1.0e+06 31.65 20% I4&Osceola Pier 2 75.76 3000 12.19 26197.08 3535.29 0.21 2.50 2.62 1.0e+06 31.65 40% I4&Osceola Pier 2 75.76 6000 1.62 2637.072 3374.60 0.13 2.50 2.62	I4&Osceola	Pier 2	80-81	1000	39.78	207998.71	30918.52	12.24	2.41	2.64	5.0E+05	58.89	68%
H4&Osceola Pier 2 80-81 4000 51.42 205802.72 32135.48 0.98 2.41 2.64 5.0E+05 58.89 80% H4&Osceola Pier 2 80-81 5000 57.61 205873.34 32216.84 0.96 2.41 2.64 5.0E+05 58.89 19% H4&Osceola Pier 2 80-81 6000 61.02 207908.29 324548.78 1.09 2.41 2.64 5.0E+05 58.89 113% H4&Osceola Pier 2 75.76 1000 61.12 207908.29 32458.78 1.09 2.41 2.64 5.0E+05 58.89 113% H4&Osceola Pier 2 75.76 1000 3.11 26625.40 75989.60 544.29 2.50 2.62 1.0E+06 31.65 39% H4&Osceola Pier 2 75.76 3000 12.19 26197.08 33374.96 0.09 2.50 2.62 1.0E+06 31.65 51% H4&Osceola Pier 2 75.76 5000 16.12 26370.72 3377.46 0.09 2.50 2.62	I4&Osceola	Pier 2	80-81	2000	43.76	206054.79	30809.08	1.29	2.41	2.64	5.0E+05	58.89	74%
I4&Osceola Pier 2 80-81 4000 51.42 205873.97 32354.46 0.92 2.41 2.64 5.0E+05 58.89 87% I4&Osceola Pier 2 80-81 6000 61.02 20798.29 32458.78 1.09 2.41 2.64 5.0E+05 58.89 104% I4&Osceola Pier 2 80-81 6000 61.02 207908.29 32458.78 1.09 2.41 2.64 5.0E+05 58.89 104% I4&Osceola Pier 2 75-76 1000 3.11 26627.40 75989.60 544.29 2.50 2.62 1.0E+06 31.65 20% I4&Osceola Pier 2 75-76 2000 6.18 26289.69 38535.22 0.21 2.50 2.62 1.0E+06 31.65 20% I4&Osceola Pier 2 75-76 3000 14.01 26590.67 35744.60 0.13 2.50 2.62 1.0E+06 31.65 144% I4&Osceola Pier 2 75-76 5000 16.12 26370.72 33774.96 0.09 2.50 2.62	I4&Osceola	Pier 2	80-81	3000	47.04	205602.72	32130.58	0.98	2.41	2.64	5.0E+05	58.89	80%
I4&Osceola Pier 2 80-81 5000 57.61 205738.34 32216.84 0.96 2.41 2.64 5.0E+05 58.89 98% I4&Osceola Pier 2 80-81 7000 66.83 105920.66 34441.42 1.31 2.41 2.64 5.0E+05 58.89 103% I4&Osceola Pier 2 75-76 1000 3.11 26625.40 75989.60 544.29 2.50 2.62 1.0E+06 31.65 10% I4&Osceola Pier 2 75-76 3000 12.19 26197.08 35335.22 0.21 2.50 2.62 1.0E+06 31.65 39% I4&Osceola Pier 2 75-76 4000 1.612 26370.72 33774.60 0.09 2.50 2.62 1.0E+06 31.65 60% I4&Osceola Pier 2 75-76 6000 19.02 2633.36 31462.77 0.06 2.50 2.62 1.0E+06 31.65 70% I4&Osceola Pier 2 75-76 6000 2.482 26353.36 26228.47 0.04 2.50 2.62	I4&Osceola	Pier 2	80-81	4000	51.42	205873.97	32354.46	0.92	2.41	2.64	5.0E+05	58.89	87%
14&Osceola Pier 2 80-81 6000 61.02 207908.29 32488.78 1.09 2.41 2.64 5.0E+05 58.89 104% 14&Osceola Pier 2 75-76 1000 3.11 26625.40 75989.60 544.29 2.50 2.62 1.0E+06 31.65 10% 14&Osceola Pier 2 75-76 2000 6.18 26289.69 38633.99 0.90 2.50 2.62 1.0E+06 31.65 20% 14&Osceola Pier 2 75-76 4000 14.01 26590.67 35744.60 0.13 2.50 2.62 1.0E+06 31.65 51% 14&Osceola Pier 2 75-76 5000 16.12 26370.72 3374.96 0.09 2.50 2.62 1.0E+06 31.65 61% 14&Osceola Pier 2 75-76 5000 16.12 26373.36 31462.77 0.06 2.50 2.62 1.0E+06 31.65 70% 14&Osceola Pier 2 75-76 5000 2.622 2.624 1.0E+06 31.65 70% 1	I4&Osceola	Pier 2	80-81	5000	57.61	205738.34	32216.84	0.96	2.41	2.64	5.0E+05	58.89	98%
Id&Osceola Pier 2 80-81 7000 66.83 105920.66 34441.42 1.31 2.41 2.64 5.0E+05 58.89 113% Id&Osceola Pier 2 75-76 1000 3.11 26625.40 75989.60 544.29 2.50 2.62 1.0E+06 31.65 10% Id&Osceola Pier 2 75-76 3000 12.19 26197.08 35335.22 0.21 2.50 2.62 1.0E+06 31.65 39% Id&Osceola Pier 2 75-76 5000 16.12 26370.72 33774.96 0.09 2.50 2.62 1.0E+06 31.65 51% Id&Osceola Pier 2 75-76 6000 19.02 2633.36 31462.77 0.06 2.50 2.62 1.0E+06 31.65 70% Id&Osceola Pier 2 75-76 6000 27.83 26382.30 24145.53 0.04 2.50 2.62 1.0E+06 31.65 78% Id&Osceola Pier 2 75-76	I4&Osceola	Pier 2	80-81	6000	61.02	207908.29	32458.78	1.09	2.41	2.64	5.0E+05	58.89	104%
I4&Osceola Pier 2 75-76 1000 3.11 26625.40 75988.60 544.29 2.50 2.62 1.0E+06 31.65 10% I4&Osceola Pier 2 75-76 2000 6.18 26289.69 38653.99 0.90 2.50 2.62 1.0E+06 31.65 20% I4&Osceola Pier 2 75-76 4000 14.01 26590.67 35744.60 0.13 2.50 2.62 1.0E+06 31.65 34% I4&Osceola Pier 2 75-76 5000 16.12 26370.72 33774.96 0.09 2.50 2.62 1.0E+06 31.65 60% I4&Osceola Pier 2 75-76 7000 22.22 26376.51 30292.13 0.05 2.62 1.0E+06 31.65 78% I4&Osceola Pier 2 75-76 9000 27.83 26382.30 24145.53 0.04 2.50 2.62 1.0E+06 31.65 103% I4&Osceola Pier 2 75-76 1000	I4&Osceola	Pier 2	80-81	7000	66.83	105920.66	34441.42	1.31	2.41	2.64	5.0E+05	58.89	113%
I4&Osceola Pier 2 75-76 2000 6.18 26289.69 38653.99 0.90 2.50 2.62 1.0E+06 31.65 20% I4&Osceola Pier 2 75-76 3000 12.19 26197.08 35335.22 0.21 2.50 2.62 1.0E+06 31.65 39% I4&Osceola Pier 2 75-76 5000 16.12 26370.72 3374.96 0.09 2.50 2.62 1.0E+06 31.65 51% I4&Osceola Pier 2 75-76 6000 19.02 26353.36 31462.77 0.06 2.50 2.62 1.0E+06 31.65 60% I4&Osceola Pier 2 75-76 8000 24.82 26353.36 26228.47 0.04 2.50 2.62 1.0E+06 31.65 88% I4&Osceola Pier 2 75-76 9000 2.68 2640.18 21012.81 0.03 2.50 2.62 1.0E+06 31.65 107% I4&Osceola Pier 3 75-76	I4&Osceola	Pier 2	75-76	1000	3.11	26625.40	75989.60	544.29	2.50	2.62	1.0E+06	31.65	10%
Id&Osceola Pier 2 75-76 3000 12.19 26197.08 35335.22 0.21 2.50 2.62 1.0E+06 31.65 39% Id&Osceola Pier 2 75-76 4000 14.01 26590.67 35744.60 0.13 2.50 2.62 1.0E+06 31.65 51% Id&Osceola Pier 2 75-76 6000 19.02 26333.35 31462.77 0.06 2.50 2.62 1.0E+06 31.65 60% Id&Osceola Pier 2 75-76 6000 22.22 26376.51 30292.13 0.05 2.50 2.62 1.0E+06 31.65 60% Id&Osceola Pier 2 75-76 9000 27.83 26382.30 24145.53 0.04 2.50 2.62 1.0E+06 31.65 88% Id&Osceola Pier 2 75-76 10000 32.68 26440.18 21012.81 0.03 2.50 2.62 1.0E+06 31.65 103% Id&Osceola Pier 3 75-76	I4&Osceola	Pier 2	75-76	2000	6.18	26289.69	38653.99	0.90	2.50	2.62	1.0E+06	31.65	20%
I4&Osceola Pier 2 75-76 4000 14.01 26590.67 35744.60 0.13 2.50 2.62 1.0E+06 31.65 44% I4&Osceola Pier 2 75-76 5000 16.12 26370.72 33774.96 0.09 2.50 2.62 1.0E+06 31.65 51% I4&Osceola Pier 2 75-76 6000 19.02 26353.36 31462.77 0.06 2.50 2.62 1.0E+06 31.65 60% I4&Osceola Pier 2 75-76 8000 24.82 26353.36 2622.847 0.04 2.50 2.62 1.0E+06 31.65 88% I4&Osceola Pier 2 75-76 9000 27.83 26382.30 24145.53 0.04 2.50 2.62 1.0E+06 31.65 163% I4&Osceola Pier 2 75-76 10000 32.68 26440.18 21012.81 0.03 2.50 2.62 1.0E+06 31.65 103% I4&Osceola Pier 3 75-76	I4&Osceola	Pier 2	75-76	3000	12.19	26197.08	35335.22	0.21	2.50	2.62	1.0E+06	31.65	39%
I4&Osceola Pier 2 75-76 5000 16.12 26370.27 33774.96 0.09 2.50 2.62 1.0E+06 31.65 51% I4&Osceola Pier 2 75-76 6000 19.02 26353.36 31462.77 0.06 2.50 2.62 1.0E+06 31.65 60% I4&Osceola Pier 2 75-76 8000 24.82 26376.51 30292.13 0.05 2.62 1.0E+06 31.65 70% I4&Osceola Pier 2 75-76 9000 27.83 26382.36 26128.47 0.04 2.50 2.62 1.0E+06 31.65 78% I4&Osceola Pier 2 75-76 10000 32.68 26440.18 21012.81 0.03 2.50 2.62 1.0E+06 31.65 107% I4&Osceola Pier 3 75-76 1000 2.11 121419.00 8970.827 1019.11 2.39 2.44 2.5E+06 35.84 6% I4&Osceola Pier 3 75-76 3000	I4&Osceola	Pier 2	75-76	4000	14.01	26590.67	35744.60	0.13	2.50	2.62	1.0E+06	31.65	44%
Id&Osceola Pier 2 75-76 6000 19.02 26353.36 31462.77 0.06 2.50 2.62 1.0E+06 31.65 60% Id&Osceola Pier 2 75-76 7000 22.22 26376.51 30292.13 0.05 2.50 2.62 1.0E+06 31.65 70% Id&Osceola Pier 2 75-76 8000 24.82 26353.36 2622.847 0.04 2.50 2.62 1.0E+06 31.65 78% Id&Osceola Pier 2 75-76 10000 32.68 26440.18 21012.81 0.03 2.50 2.62 1.0E+06 31.65 103% Id&Osceola Pier 2 75-76 10000 3.72 15292.24 18082.69 0.03 2.50 2.62 1.0E+06 31.65 103% Id&Osceola Pier 3 75-76 1000 3.17 12292.74 18082.69 0.03 2.64 2.5E+06 35.84 6% Id&Osceola Pier 3 75-76 0000	I4&Osceola	Pier 2	75-76	5000	16.12	26370.72	33774.96	0.09	2.50	2.62	1.0E+06	31.65	51%
Id&Osceola Pier 2 75-76 7000 22.22 26376.51 30292.13 0.05 2.50 2.62 1.0E+06 31.65 70% Id&Osceola Pier 2 75-76 8000 24.82 26353.36 2622.847 0.04 2.50 2.62 1.0E+06 31.65 78% Id&Osceola Pier 2 75-76 9000 32.68 2642.18 21012.81 0.03 2.50 2.62 1.0E+06 31.65 103% Id&Osceola Pier 2 75-76 1000 32.72 15292.24 18082.69 0.03 2.50 2.62 1.0E+06 31.65 103% Id&Osceola Pier 3 75-76 1000 2.11 121419.00 89706.27 1019.11 2.39 2.44 2.5E+06 35.84 6% Id&Osceola Pier 3 75-76 3000 9.91 122189.32 35616.28 2.71 2.39 2.44 2.5E+06 35.84 32% Id&Osceola Pier 3 75-76	I4&Osceola	Pier 2	75-76	6000	19.02	26353.36	31462.77	0.06	2.50	2.62	1.0E+06	31.65	60%
I4&Osceola Pier 2 75-76 8000 24.82 26353.36 26228.47 0.04 2.50 2.62 1.0E+06 31.65 78% I4&Osceola Pier 2 75-76 9000 27.83 26382.30 24145.53 0.04 2.50 2.62 1.0E+06 31.65 88% I4&Osceola Pier 2 75-76 10000 32.68 26440.18 21012.81 0.03 2.50 2.62 1.0E+06 31.65 103% I4&Osceola Pier 2 75-76 1000 3.72 15292.24 18082.69 0.03 2.50 2.62 1.0E+06 31.65 107% I4&Osceola Pier 3 75-76 1000 2.11 121419.00 89706.27 1019.11 2.39 2.44 2.5E+06 35.84 6% I4&Osceola Pier 3 75-76 3000 9.91 122189.32 35616.28 2.71 2.39 2.44 2.5E+06 35.84 2% I4&Osceola Pier 3 75-76	I4&Osceola	Pier 2	75-76	7000	22.22	26376.51	30292.13	0.05	2.50	2.62	1.0E+06	31.65	70%
Id&Osceola Pier 2 75-76 9000 27.83 26382.30 24145.53 0.04 2.50 2.62 1.0E+06 31.65 88% Id&Osceola Pier 2 75-76 10000 32.68 26440.18 21012.81 0.03 2.50 2.62 1.0E+06 31.65 103% Id&Osceola Pier 2 75-76 1000 3.72 15292.24 18082.69 0.03 2.50 2.62 1.0E+06 31.65 103% Id&Osceola Pier 3 75-76 1000 2.11 121419.00 89706.27 1019.11 2.39 2.44 2.5E+06 35.84 6% Id&Osceola Pier 3 75-76 2000 3.46 121073.68 39297.83 32.81 2.39 2.44 2.5E+06 35.84 28% Id&Osceola Pier 3 75-76 5000 15.11 121073.68 38242.31 0.75 2.39 2.44 2.5E+06 35.84 28% Id&Osceola Pier 3 75-76 <td>I4&Osceola</td> <td>Pier 2</td> <td>75-76</td> <td>8000</td> <td>24.82</td> <td>26353.36</td> <td>26228.47</td> <td>0.04</td> <td>2.50</td> <td>2.62</td> <td>1.0E+06</td> <td>31.65</td> <td>78%</td>	I4&Osceola	Pier 2	75-76	8000	24.82	26353.36	26228.47	0.04	2.50	2.62	1.0E+06	31.65	78%
I4&Osceola Pier 2 75-76 10000 32.68 26440.18 21012.81 0.03 2.50 2.62 1.0E+06 31.65 103% I4&Osceola Pier 2 75-76 11000 33.72 15292.24 18082.69 0.03 2.50 2.62 1.0E+06 31.65 107% I4&Osceola Pier 3 75-76 1000 2.11 121419.00 89706.27 1019.11 2.39 2.44 2.5E+06 35.84 6% I4&Osceola Pier 3 75-76 2000 3.46 121073.68 39297.83 32.81 2.39 2.44 2.5E+06 35.84 28% I4&Osceola Pier 3 75-76 3000 9.91 122189.32 3561.50 1.12 2.39 2.44 2.5E+06 35.84 28% I4&Osceola Pier 3 75-76 6000 17.98 121073.68 39528.49 0.79 2.39 2.44 2.5E+06 35.84 50% I4&Osceola Pier 3 75-76 <td>I4&Osceola</td> <td>Pier 2</td> <td>75-76</td> <td>9000</td> <td>27.83</td> <td>26382.30</td> <td>24145.53</td> <td>0.04</td> <td>2.50</td> <td>2.62</td> <td>1.0E+06</td> <td>31.65</td> <td>88%</td>	I4&Osceola	Pier 2	75-76	9000	27.83	26382.30	24145.53	0.04	2.50	2.62	1.0E+06	31.65	88%
I4&Osceola Pier 2 75-76 11000 33.72 15292.24 18082.69 0.03 2.50 2.62 1.0E+06 31.65 107% I4&Osceola Pier 3 75-76 1000 2.11 121419.00 89706.27 1019.11 2.39 2.44 2.5E+06 35.84 6% I4&Osceola Pier 3 75-76 3000 9.91 122189.32 35616.28 2.71 2.39 2.44 2.5E+06 35.84 28% I4&Osceola Pier 3 75-76 4000 11.47 120940.86 35261.50 1.12 2.39 2.44 2.5E+06 35.84 28% I4&Osceola Pier 3 75-76 6000 17.98 121073.68 3842.31 0.55 2.39 2.44 2.5E+06 35.84 50% I4&Osceola Pier 3 75-76 6000 17.98 121073.68 38442.31 0.55 2.39 2.44 2.5E+06 35.84 50% I4&Osceola Pier 3 75-76 <td>I4&Osceola</td> <td>Pier 2</td> <td>75-76</td> <td>10000</td> <td>32.68</td> <td>26440.18</td> <td>21012.81</td> <td>0.03</td> <td>2.50</td> <td>2.62</td> <td>1.0E+06</td> <td>31.65</td> <td>103%</td>	I4&Osceola	Pier 2	75-76	10000	32.68	26440.18	21012.81	0.03	2.50	2.62	1.0E+06	31.65	103%
Id&OsceolaPier 375-7610002.11121419.0089706.271019.112.392.442.5E+0635.846%Id&OsceolaPier 375-7620003.46121073.6839297.8332.812.392.442.5E+0635.8410%Id&OsceolaPier 375-7620009.91121073.6839297.8332.812.392.442.5E+0635.8428%Id&OsceolaPier 375-76400011.47120940.8635261.501.122.392.442.5E+0635.8432%Id&OsceolaPier 375-76500015.11121073.683928.490.792.392.442.5E+0635.8442%Id&OsceolaPier 375-76700020.85121020.5540315.730.432.392.442.5E+0635.8458%Id&OsceolaPier 375-76700020.85121020.5540315.730.432.392.442.5E+0635.8458%Id&OsceolaPier 375-76800023.4812208.0739036.940.272.392.442.5E+0635.8466%Id&OsceolaPier 375-761000031.39121020.5538837.070.222.392.442.5E+0635.848%Id&OsceolaPier 375-761000031.39121020.5538837.070.222.392.442.5E+0635.8410%Id&OsceolaPier 3	I4&Osceola	Pier 2	75-76	11000	33.72	15292.24	18082.69	0.03	2.50	2.62	1.0E+06	31.65	107%
I4&OsceolaPier 375-7620003.46121073.6839297.8332.812.392.442.5E+0635.8410%I4&OsceolaPier 375-7630009.91122189.3235616.282.712.392.442.5E+0635.8428%I4&OsceolaPier 375-76400011.47120940.8635261.501.122.392.442.5E+0635.8422%I4&OsceolaPier 375-76500015.11121073.6839528.490.792.392.442.5E+0635.8442%I4&OsceolaPier 375-76600017.98121073.6839528.490.792.392.442.5E+0635.8450%I4&OsceolaPier 375-76700020.8512102.5540315.730.432.392.442.5E+0635.8458%I4&OsceolaPier 375-76900026.50121365.8739036.940.272.392.442.5E+0635.8474%I4&OsceolaPier 375-761000031.39121073.683533.580.182.392.442.5E+0635.8488%I4&OsceolaPier 375-761200041.45121286.1836624.890.172.392.442.5E+0635.8410%I4&OsceolaPier 375-761200041.45121286.1836624.890.172.392.442.5E+0635.8410%I4&OsceolaPier 3	I4&Osceola	Pier 3	75-76	1000	2.11	121419.00	89706.27	1019.11	2.39	2.44	2.5E+06	35.84	6%
I4&Osceola Pier 3 75-76 3000 9.91 122189.32 35616.28 2.71 2.39 2.44 2.5E+06 35.84 28% I4&Osceola Pier 3 75-76 4000 11.47 120940.86 35261.50 1.12 2.39 2.44 2.5E+06 35.84 32% I4&Osceola Pier 3 75-76 6000 17.98 121073.68 39528.49 0.79 2.39 2.44 2.5E+06 35.84 42% I4&Osceola Pier 3 75-76 6000 17.98 121073.68 3842.31 0.55 2.39 2.44 2.5E+06 35.84 50% I4&Osceola Pier 3 75-76 7000 2.0.85 121020.55 40315.73 0.43 2.39 2.44 2.5E+06 35.84 58% I4&Osceola Pier 3 75-76 9000 26.50 121365.87 39036.94 0.27 2.39 2.44 2.5E+06 35.84 66% I4&Osceola Pier 3 75-76	I4&Osceola	Pier 3	75-76	2000	3.46	121073.68	39297.83	32.81	2.39	2.44	2.5E+06	35.84	10%
I4&Osceola Pier 3 75-76 4000 11.47 120940.86 35261.50 1.12 2.39 2.44 2.5E+06 35.84 32% I4&Osceola Pier 3 75-76 5000 15.11 121073.68 39528.49 0.79 2.39 2.44 2.5E+06 35.84 42% I4&Osceola Pier 3 75-76 6000 17.98 121073.68 38442.31 0.55 2.39 2.44 2.5E+06 35.84 50% I4&Osceola Pier 3 75-76 7000 20.85 121020.55 40315.73 0.43 2.39 2.44 2.5E+06 35.84 50% I4&Osceola Pier 3 75-76 8000 2.348 12208.07 39020.03 0.36 2.39 2.44 2.5E+06 35.84 66% I4&Osceola Pier 3 75-76 10000 31.39 121020.55 3883.707 0.22 2.39 2.44 2.5E+06 35.84 88% I4&Osceola Pier 3 75-76 <td>I4&Osceola</td> <td>Pier 3</td> <td>75-76</td> <td>3000</td> <td>9.91</td> <td>122189.32</td> <td>35616.28</td> <td>2.71</td> <td>2.39</td> <td>2.44</td> <td>2.5E+06</td> <td>35.84</td> <td>28%</td>	I4&Osceola	Pier 3	75-76	3000	9.91	122189.32	35616.28	2.71	2.39	2.44	2.5E+06	35.84	28%
I4&Osceola Pier 3 75-76 5000 15.11 121073.68 39528.49 0.79 2.39 2.44 2.5E+06 35.84 42% I4&Osceola Pier 3 75-76 6000 17.98 121073.68 39528.49 0.79 2.39 2.44 2.5E+06 35.84 50% I4&Osceola Pier 3 75-76 6000 20.85 121020.55 40315.73 0.43 2.39 2.44 2.5E+06 35.84 58% I4&Osceola Pier 3 75-76 8000 23.48 122083.07 3902.03 0.36 2.39 2.44 2.5E+06 35.84 58% I4&Osceola Pier 3 75-76 9000 26.50 121365.87 39036.94 0.27 2.39 2.44 2.5E+06 35.84 88% I4&Osceola Pier 3 75-76 10000 31.39 121020.55 38837.07 0.22 2.39 2.44 2.5E+06 35.84 101% I4&Osceola Pier 3 75-76 <td>I4&Osceola</td> <td>Pier 3</td> <td>75-76</td> <td>4000</td> <td>11.47</td> <td>120940.86</td> <td>35261.50</td> <td>1.12</td> <td>2.39</td> <td>2.44</td> <td>2.5E+06</td> <td>35.84</td> <td>32%</td>	I4&Osceola	Pier 3	75-76	4000	11.47	120940.86	35261.50	1.12	2.39	2.44	2.5E+06	35.84	32%
I4&Osceola Pier 3 75-76 6000 17.98 121073.68 38442.31 0.55 2.39 2.44 2.5E+06 35.84 50% I4&Osceola Pier 3 75-76 7000 20.85 121020.55 40315.73 0.43 2.39 2.44 2.5E+06 35.84 58% I4&Osceola Pier 3 75-76 8000 23.48 122083.07 39020.03 0.36 2.39 2.44 2.5E+06 35.84 66% I4&Osceola Pier 3 75-76 9000 26.50 121365.87 39036.94 0.27 2.39 2.44 2.5E+06 35.84 66% I4&Osceola Pier 3 75-76 10000 31.39 121020.55 38837.07 0.22 2.39 2.44 2.5E+06 35.84 88% I4&Osceola Pier 3 75-76 10000 36.19 121020.55 38837.07 0.22 2.39 2.44 2.5E+06 35.84 101% I4&Osceola Pier 3 75-76<	I4&Osceola	Pier 3	75-76	5000	15.11	121073.68	39528.49	0.79	2.39	2.44	2.5E+06	35.84	42%
I4&Osceola Pier 3 75-76 7000 20.85 121020.55 40315.73 0.43 2.39 2.44 2.5E+06 35.84 58% I4&Osceola Pier 3 75-76 8000 23.48 122083.07 39020.03 0.36 2.39 2.44 2.5E+06 35.84 66% I4&Osceola Pier 3 75-76 9000 26.50 121365.87 39036.94 0.27 2.39 2.44 2.5E+06 35.84 66% I4&Osceola Pier 3 75-76 10000 31.39 121020.55 38837.07 0.22 2.39 2.44 2.5E+06 35.84 88% I4&Osceola Pier 3 75-76 10000 36.19 121073.65 3833.58 0.18 2.39 2.44 2.5E+06 35.84 88% I4&Osceola Pier 3 75-76 10000 36.19 121073.65 36624.89 0.17 2.39 2.44 2.5E+06 35.84 10% I4&Osceola Pier 3 75-76 </td <td>I4&Osceola</td> <td>Pier 3</td> <td>75-76</td> <td>6000</td> <td>17.98</td> <td>121073.68</td> <td>38442.31</td> <td>0.55</td> <td>2.39</td> <td>2.44</td> <td>2.5E+06</td> <td>35.84</td> <td>50%</td>	I4&Osceola	Pier 3	75-76	6000	17.98	121073.68	38442.31	0.55	2.39	2.44	2.5E+06	35.84	50%
I4&Osceola Pier 3 75-76 8000 23.48 122083.07 39020.03 0.36 2.39 2.44 2.5E+06 35.84 66% I4&Osceola Pier 3 75-76 9000 26.50 121365.87 39036.94 0.27 2.39 2.44 2.5E+06 35.84 74% I4&Osceola Pier 3 75-76 1000 31.39 121020.55 38837.07 0.22 2.39 2.44 2.5E+06 35.84 88% I4&Osceola Pier 3 75-76 1000 36.19 121073.68 35338.58 0.18 2.39 2.44 2.5E+06 35.84 101% I4&Osceola Pier 3 75-76 12000 41.45 121286.18 36624.89 0.17 2.39 2.44 2.5E+06 35.84 116% I4&Osceola Pier 3 75-76 13000 45.68 121179.39 3438.692 0.16 2.39 2.44 2.5E+06 35.84 127% I4&Osceola Pier 3 75-7	I4&Osceola	Pier 3	75-76	7000	20.85	121020.55	40315.73	0.43	2.39	2.44	2.5E+06	35.84	58%
I4&Osceola Pier 3 75-76 9000 26.50 121365.87 39036.94 0.27 2.39 2.44 2.5E+06 35.84 74% I4&Osceola Pier 3 75-76 10000 31.39 121020.55 38837.07 0.22 2.39 2.44 2.5E+06 35.84 88% I4&Osceola Pier 3 75-76 10000 36.19 121020.55 38837.07 0.22 2.39 2.44 2.5E+06 35.84 88% I4&Osceola Pier 3 75-76 12000 41.45 121286.18 35624.89 0.17 2.39 2.44 2.5E+06 35.84 101% I4&Osceola Pier 3 75-76 12000 41.45 12179.36 36624.89 0.17 2.39 2.44 2.5E+06 35.84 116% I4&Osceola Pier 3 75-76 13000 45.68 12179.93 34386.92 0.16 2.39 2.44 2.5E+06 35.84 127% I4&Osceola Pier 3 75-	I4&Osceola	Pier 3	75-76	8000	23.48	122083.07	39020.03	0.36	2.39	2.44	2.5E+06	35.84	66%
I4&Osceola Pier 3 75-76 1000 31.39 121020.55 38837.07 0.22 2.39 2.44 2.5E+06 35.84 88% I4&Osceola Pier 3 75-76 11000 36.19 121073.68 35385.88 0.18 2.39 2.44 2.5E+06 35.84 101% I4&Osceola Pier 3 75-76 12000 41.45 121286.18 36624.89 0.17 2.39 2.44 2.5E+06 35.84 116% I4&Osceola Pier 3 75-76 13000 45.68 121179.39 34386.92 0.16 2.39 2.44 2.5E+06 35.84 127% I4&Osceola Pier 3 75-76 13000 45.68 12179.93 34386.92 0.16 2.39 2.44 2.5E+06 35.84 127% I4&Osceola Pier 3 75-76 14000 49.93 122454.95 36437.02 0.18 2.39 2.44 2.5E+06 35.84 139% I4&Osceola Pier 3	I4&Osceola	Pier 3	75-76	9000	26.50	121365.87	39036.94	0.27	2.39	2.44	2.5E+06	35.84	74%
I4&Osceola Pier 3 75-76 11000 36.19 121073.68 35338.58 0.18 2.39 2.44 2.5E+06 35.84 101% I4&Osceola Pier 3 75-76 12000 41.45 121286.18 36624.89 0.17 2.39 2.44 2.5E+06 35.84 116% I4&Osceola Pier 3 75-76 13000 45.68 121179.93 34386.92 0.16 2.39 2.44 2.5E+06 35.84 117% I4&Osceola Pier 3 75-76 13000 45.68 121179.93 34386.92 0.16 2.39 2.44 2.5E+06 35.84 127% I4&Osceola Pier 3 75-76 14000 49.93 122454.95 36437.02 0.18 2.39 2.44 2.5E+06 35.84 139% I4&Osceola Pier 3 75-76 15000 49.44 98149.90 35632.76 0.19 2.39 2.44 2.5E+06 35.84 138%	14&Osceola	Pier 3	75-76	10000	31.39	121020.55	38837.07	0.22	2.39	2.44	2.5E+06	35.84	88%
I4&Osceola Pier 3 75-76 12000 41.45 121286.18 36624.89 0.17 2.39 2.44 2.5E+06 35.84 116% I4&Osceola Pier 3 75-76 13000 45.68 121179.93 34386.92 0.16 2.39 2.44 2.5E+06 35.84 117% I4&Osceola Pier 3 75-76 14000 49.93 122454.95 36437.02 0.18 2.39 2.44 2.5E+06 35.84 139% I4&Osceola Pier 3 75-76 14000 49.93 122454.95 36437.02 0.18 2.39 2.44 2.5E+06 35.84 139% I4&Osceola Pier 3 75-76 15000 49.49 93632.76 0.19 2.39 2.44 2.5E+06 35.84 138%	I4&Osceola	Pier 3	75-76	11000	36.19	121073.68	35338.58	0.18	2.39	2.44	2.5E+06	35.84	101%
I4&Osceola Pier 3 75-76 13000 45.68 121179.93 34386.92 0.16 2.39 2.44 2.5E+06 35.84 127% I4&Osceola Pier 3 75-76 14000 49.93 122454.95 36437.02 0.18 2.39 2.44 2.5E+06 35.84 139% I4&Osceola Pier 3 75-76 15000 49.44 98149.90 35632.76 0.19 2.39 2.44 2.5E+06 35.84 138%	I4&Osceola	Pier 3	75-76	12000	41.45	121286.18	36624.89	0.17	2.39	2.44	2.5E+06	35.84	116%
I4&Osceola Pier 3 75-76 14000 49.93 122454.95 36437.02 0.18 2.39 2.44 2.5E+06 35.84 139% I4&Osceola Pier 3 75-76 15000 49.44 98149.90 35632.76 0.19 2.39 2.44 2.5E+06 35.84 138%	I4&Osceola	Pier 3	75-76	13000	45.68	121179.93	34386.92	0.16	2.39	2.44	2.5E+06	35.84	127%
14&Osceola Pier 3 75-76 15000 49.44 98149.90 35632.76 0.19 2.39 2.44 2.5E+06 35.84 138%	I4&Osceola	Pier 3	75-76	14000	49.93	122454.95	36437.02	0.18	2.39	2.44	2.5E+06	35.84	139%
	I4&Osceola	Pier 3	75-76	15000	49.44	98149.90	35632.76	0.19	2.39	2.44	2.5E+06	35.84	138%

I4&Osceola	Pier 3	80-82	1000	4.02	83569.01	82769.57	407.38	2.35	2.43	2.0E+06	51.98	8%
I4&Osceola	Pier 3	80-82	2000	7.49	82952.26	65951.07	6.42	2.35	2.43	2.0E+06	51.98	14%
I4&Osceola	Pier 3	80-82	3000	15.28	82643.89	50932.88	1.27	2.35	2.43	2.0E+06	51.98	29%
I4&Osceola	Pier 3	80-82	4000	18.68	82698.31	49927.01	0.69	2.35	2.43	2.0E+06	51.98	36%
I4&Osceola	Pier 3	80-82	5000	22.55	82607.61	45493.46	0.45	2.35	2.43	2.0E+06	51.98	43%
I4&Osceola	Pier 3	80-82	6000	25.51	83478.31	42998.07	0.32	2.35	2.43	2.0E+06	51.98	49%
I4&Osceola	Pier 3	80-82	7000	30.31	82643.89	42040.74	0.26	2.35	2.43	2.0E+06	51.98	58%
I4&Osceola	Pier 3	80-82	8000	31.73	82625.75	40865.98	0.23	2.35	2.43	2.0E+06	51.98	61%
14&Osceola	Pier 3	80-82	9000	38.13	82680.17	41724.77	0.21	2.35	2.43	2.0E+06	51.98	73%
14&Osceola	Pier 3	80-82	10000	41.07	83097.38	37534.00	0.18	2.35	2.43	2.0E+06	51.98	79%
14&Osceola	Pier 3	80-82	11000	47.27	83278.77	35635.16	0.20	2.35	2.43	2.0E+06	51.98	91%
14&Osceola	Pier 3	80-82	12000	58.19	82680.17	38173.86	0.26	2.35	2.43	2.0E+06	51.98	112%
14&Osceola	Pier 3	80-82	13000	54.69	8670.72	38820.73	0.31	2.35	2.43	2.0E+06	51.98	105%
I4&Osceola	Pier 3	80-82	1000	3.90	425224.73	99325.49	22042.92	2.25	2.33	5.0E+06	51.98	8%
14&Osceola	Pier 3	80-82	2000	7.32	441761.78	60328.25	1987.22	2.25	2.33	5.0E+06	51.98	14%
14&Osceola	Pier 3	80-82	3000	14.32	441665.07	59853.46	11.15	2.25	2.33	5.0E+06	51.98	28%
14&Osceola	Pier 3	80-82	4000	18 13	440988 12	48795 35	4 59	2 25	2 33	5.0E+06	51.98	35%
14&Osceola	Pier 3	80-82	5000	21 44	443986.06	47656 77	2.88	2 25	2 33	5.0E+06	51.98	41%
14&Osceola	Pier 3	80-82	6000	24.82	444372 90	52597.06	2.00	2.25	2.33	5.0E+06	51.98	48%
14&Osceola	Pier 3	80-82	7000	29.02	440988 12	44543.94	1 39	2.25	2.33	5.0E+06	51.98	56%
14&Osceola	Pier 3	80-82	8000	33.47	440891 41	44785 88	1.09	2.25	2.33	5.0E+06	51.98	64%
14&Osceola	Pior 3	80-82	9000	35.73	440001.41	44703.00	0.87	2.25	2.33	5.0E+06	51.00	69%
1480302018	Pier 3	80-82	10000	12 58	440734.70	38680 50	0.67	2.25	2.33	5.05+06	51.08	82%
1480302018	Pier 3	80-82	11000	51.84	440210.33	37210 31	0.02	2.25	2.33	5.05+06	51.08	100%
1480302018	Pier 3	80-82	12000	57.30	433524.33	3706/ 00	0.40	2.25	2.33	5.05+06	51.08	110%
148.0500012	Pier 2	00-02	12000	62.97	440001.25	12121 7E	0.35	2.25	2.33	5.00100	E1 00	1220/
14&Osceola	Pier 2	00-02	14000	05.87	441471.00	20102 59	0.38	2.23	2.33	5.00+00	51.50 E1.00	123/0
14&Osceola	Pier 2	00-02	14000	71 24	262461 20	20650 20	0.37	2.23	2.33	5.00+00	51.50 E1.00	107%
14&Osceola	Pier 3	00-02 00.91	1000	1.24	E1220 21	71041 10	105 20	2.23	2.33	1.0E+07	E0 00	137/0
1480500010	Fiel 2	80-81	2000	4.53	51556.51	71341.10	103.30	2.42	2.45	1.00+07	50.05	0/0
14&Osceola	Pier 2	80-81	2000	9.02	50549.00	54520.20	4.20	2.42	2.45	1.0E+07	50.09	10%
14&Osceola	Pier 2	80-81	4000	19.65	50657.94	59014.24	1.10	2.42	2.45	1.0E+07	50.09	34%
14&Osceola	Pier 2	80-81	4000	24.00	500/1.29	62255.14	0.00	2.42	2.45	1.0E+07	50.09	42%
14&Osceola	Pier 2	80-81	5000	30.20	51115.97	64450.64	0.47	2.42	2.45	1.0E+07	50.09	51%
14&0502018	Pier 2	00-01	7000	34.67	50982.50	60032.50	0.55	2.42	2.45	1.0E+07	50.09	59%
14&Osceola	Pier 2	80-81	7000	39.92	50749.11	64505.89	0.28	2.42	2.43	1.0E+07	58.89	08%
14&Osceola	Pier 2	80-81	8000	43.57	50649.05	54410.01	0.20	2.42	2.43	1.0E+07	58.89	74%
14&Osceola	Pier 2	80-81	9000	47.87	50671.29	62802.49	0.19	2.42	2.43	1.0E+07	58.89	81%
14&Osceola	Pier 2	80-81	10000	54.47	512/1.61	54659.30	0.15	2.42	2.43	1.0E+07	58.89	93%
14&Osceola	Pier 2	80-81	11000	52.25	293/1.11	56034.62	1.92	2.42	2.43	1.0E+07	58.89	89%
14&Osceola	Pier 4	60-61	1000	2.83	125260.27	304452.63	346.52	2.28	2.30	2.5E+07	28.31	10%
14&Osceola	Pier 4	60-61	2000	4.34	124390.40	103180.36	43.77	2.28	2.30	2.5E+07	28.31	15%
14&Osceola	Pler 4	60-61	3000	8.08	123/10.82	58327.17	3.30	2.28	2.30	2.5E+07	28.31	29%
14&Osceola	Pier 4	60-61	4000	9.91	124037.02	59881.18	1.20	2.28	2.30	2.5E+07	28.31	35%
14&Osceola	Pier 4	60-61	5000	12.07	124852.52	51442.60	0.62	2.28	2.30	2.5E+07	28.31	43%
I4&Osceola	Pier 4	60-61	6000	14.29	124118.57	47987.04	0.43	2.28	2.30	2.5E+07	28.31	50%
14&Osceola	Pier 4	60-61	/000	16.10	124009.84	4/251.81	0.34	2.28	2.30	2.5E+07	28.31	57%
I4&Osceola	Pier 4	60-61	8000	17.47	124009.84	62583.21	0.38	2.28	2.30	2.5E+07	28.31	62%
I4&Osceola	Pier 4	60-61	9000	19.13	123846.74	44213.08	0.24	2.28	2.30	2.5E+07	28.31	68%
I4&Osceola	Pier 4	60-61	10000	22.44	125287.45	37637.01	0.20	2.28	2.30	2.5E+07	28.31	79%
I4&Osceola	Pier 4	60-61	11000	25.44	123982.66	40680.84	0.26	2.28	2.30	2.5E+07	28.31	90%
I4&Osceola	Pier 4	60-61	12000	28.67	124037.02	40479.66	0.34	2.28	2.30	2.5E+07	28.31	101%
I4&Osceola	Pier 4	60-61	13000	33.13	123873.92	34106.05	0.37	2.28	2.30	2.5E+07	28.31	117%
I4&Osceola	Pier 4	60-61	14000	38.02	124037.02	37507.66	0.51	2.28	2.30	2.5E+07	28.31	134%
I4&Osceola	Pier 4	60-61	15000	39.16	103187.49	45663.93	0.75	2.28	2.30	2.5E+07	28.31	138%

Heritage	P1	62-64	1000	4.74	200088.43	39567.03	11.62	2.39	2.47	1.0E+06	38.31	12%
Heritage	P1	62-64	2000	9.06	197831.96	40609.10	0.80	2.39	2.47	1.0E+06	38.31	24%
Heritage	P1	62-64	3000	17.84	197875.35	35013.40	0.22	2.39	2.47	1.0E+06	38.31	47%
Heritage	P1	62-64	4000	21.96	197614.99	29326.18	0.11	2.39	2.47	1.0E+06	38.31	57%
Heritage	P1	62-64	5000	25.97	198005.54	23451.29	0.08	2.39	2.47	1.0E+06	38.31	68%
Heritage	P1	62-64	6000	29.76	197918.75	18929.84	0.06	2.39	2.47	1.0E+06	38.31	78%
Heritage	P1	62-64	7000	33.52	199697.89	15236.36	0.06	2.39	2.47	1.0E+06	38.31	87%
Heritage	P1	62-64	8000	40.30	197831.96	15035.06	0.50	2.39	2.47	1.0E+06	38.31	105%
Heritage	P1	62-64	9000	40.08	198092.32	13693.20	0.18	2.39	2.47	1.0E+06	38.31	105%
Heritage	P1	62-64	10000	44.69	106705.15	14328.46	2.75	2.39	2.47	1.0E+06	38.31	117%
Heritage	P10	62-64	1000	3.54	132747.05	24848.61	3.36	2.36	2.49	2.5E+05	31.45	11%
Heritage	P10	62-64	2000	7.03	134116.47	23728.36	0.16	2.36	2.49	2.5E+05	31.45	22%
Heritage	P10	62-64	3000	14.19	132834.46	22567.79	0.08	2.36	2.49	2.5E+05	31.45	45%
Heritage	P10	62-64	4000	17.59	132688.77	21969.34	0.05	2.36	2.49	2.5E+05	31.45	56%
Heritage	P10	62-64	5000	20.59	132659.64	20721.06	0.04	2.36	2.49	2.5E+05	31.45	65%
Heritage	P10	62-64	6000	24 54	132455 68	18824 11	0.03	2 36	2 49	2 5E+05	31.45	78%
Heritage	P10	62-64	7000	26.15	133533 74	16428 36	0.03	2.36	2.19	2.5E+05	31.45	83%
Heritage	P10	62-64	8000	28 70	133446 33	14400 11	0.02	2.36	2.10	2.5E+05	31.45	91%
Heritage	P10	62-64	9000	30.86	132688 77	12515 87	0.02	2.30	2.45	2.5E+05	31.45	98%
Heritage	P10	62-64	10000	34.60	132080.17	10359.47	0.02	2.30	2.45	2.56+05	31 //5	110%
Heritage	P10	62-04	110000	29.01	112080.00	20335.47	0.03	2.50	2.49	2.35+05	31.45 21.45	121%
Heritage	P10	67 E0	1000	2 71	195676.25	60215.66	24.67	2.30	2.45	1.0E+06	20 21	10%
Heritage	Г1 D1	57-59	2000	5.71	185108 66	39704 44	1 38	2.42	2.47	1.0E+00	38 31	10%
Horitago	P1	57-55	2000	11 44	104704 26	24264.19	0.20	2.42	2.47	1.00+06	20.21	20%
Heritage	P1	57-59	4000	14.44	104/04.20	24304.10	0.20	2.42	2.47	1.00+00	20.21	30%
Heritage	P1	57-59	4000	14.12	104024.01	20956.01	0.09	2.42	2.47	1.00+00	20.21	57%
Heritage	PI	57-59	5000	19.75	104005.50	10004.51	0.06	2.42	2.47	1.02+06	30.31	52%
Heritage	P1	57-59	6000	18.41	1852/0.86	16336.12	0.04	2.42	2.47	1.0E+06	38.31	48%
Heritage	P1	57-59	/000	21.12	18/014.49	12847.41	0.03	2.42	2.47	1.0E+06	38.31	55%
Heritage	P1	57-59	8000	22.80	185108.66	11/41.84	0.03	2.42	2.47	1.0E+06	38.31	60%
Heritage	P1	57-59	9000	24.39	185108.66	9642.32	0.04	2.42	2.47	1.0E+06	38.31	64%
Heritage	P1	57-59	10000	28.54	184622.06	7701.95	0.05	2.42	2.47	1.0E+06	38.31	74%
Heritage	P1	57-59	11000	33.09	157372.77	7943.54	0.15	2.42	2.47	1.0E+06	38.31	86%
Heritage	P1	65-67	1000	3.12	88058.79	/9541./3	150.29	2.50	2.51	2.0E+07	38.31	8%
Heritage	P1	65-67	2000	6.55	88829.38	41379.63	1.65	2.50	2.51	2.0E+07	38.31	17%
Heritage	P1	65-67	3000	13.64	87943.21	39263.46	0.33	2.50	2.51	2.0E+07	38.31	36%
Heritage	P1	65-67	4000	17.08	87923.94	42760.65	0.18	2.50	2.51	2.0E+07	38.31	45%
Heritage	P1	65-67	5000	20.26	88309.23	41669.02	0.14	2.50	2.51	2.0E+07	38.31	53%
Heritage	P1	65-67	6000	23.79	87943.21	41806.19	0.09	2.50	2.51	2.0E+07	38.31	62%
Heritage	P1	65-67	7000	27.06	87808.35	38667.04	0.07	2.50	2.51	2.0E+07	38.31	71%
Heritage	P1	65-67	8000	30.23	88867.91	36349.97	0.05	2.50	2.51	2.0E+07	38.31	79%
Heritage	P1	65-67	9000	33.56	87750.56	33920.87	0.04	2.50	2.51	2.0E+07	38.31	88%
Heritage	P1	65-67	10000	39.61	87962.47	32747.35	0.04	2.50	2.51	2.0E+07	38.31	103%
Heritage	P1	65-67	11000	45.42	88001.00	41683.13	0.03	2.50	2.51	2.0E+07	38.31	119%
Heritage	P1	65-67	12000	50.73	87866.15	29458.61	0.02	2.50	2.51	2.0E+07	38.31	132%
Heritage	P1	65-67	13000	55.60	88964.23	15724.09	0.02	2.50	2.51	2.0E+07	38.31	145%
Heritage	P1	65-67	14000	53.56	48874.46	16691.05	0.12	2.50	2.51	2.0E+07	38.31	140%
Heritage	P10	55-57	1000	2.45	150061.92	42322.56	6.39	2.44	2.45	2.0E+07	23.35	11%
Heritage	P10	55-57	2000	4.68	151678.32	31870.22	0.58	2.44	2.45	2.0E+07	23.35	20%
Heritage	P10	55-57	3000	9.19	150754.66	27139.19	0.18	2.44	2.45	2.0E+07	23.35	39%
Heritage	P10	55-57	4000	12.11	150688.69	23986.06	0.09	2.44	2.45	2.0E+07	23.35	52%
Heritage	P10	55-57	5000	14.11	150490.76	20738.69	0.05	2.44	2.45	2.0E+07	23.35	60%
Heritage	P10	55-57	6000	16.16	150325.82	20221.16	0.04	2.44	2.45	2.0E+07	23.35	69%
Heritage	P10	55-57	7000	18.13	152272.11	17924.39	0.03	2.44	2.45	2.0E+07	23.35	78%
Heritage	P10	55-57	8000	19.91	150358.81	15736.76	0.02	2.44	2.45	2.0E+07	23.35	85%
Heritage	P10	55-57	9000	21.53	150358.81	14177.53	0.02	2.44	2.45	2.0E+07	23.35	92%
Heritage	P10	55-57	10000	24.84	150424.78	12807.12	0.02	2.44	2.45	2.0E+07	23.35	106%
Heritage	P10	55-57	11000	27.33	151975.22	11171.21	0.02	2.44	2.45	2.0E+07	23.35	117%
Heritage	P10	55-57	12000	28.60	150853.63	9058.08	0.04	2.44	2.45	2.0E+07	23.35	122%
Heritage	P10	55-57	13000	34.37	106221.01	8272.34	0.17	2.44	2.45	2.0E+07	23.35	147%

Heritage	P1	60-62	1000	5.15	358944.38	46440.10	129.87	2.41	2.46	2.0E+06	38.31	13%
Heritage	P1	60-62	2000	8.34	354666.60	41571.52	8.01	2.41	2.46	2.0E+06	38.31	22%
Heritage	P1	60-62	3000	16.60	354277 71	34018 45	1 45	2 4 1	2 46	2 0F+06	38 31	43%
Horitago	D1	60 62	4000	20.66	251666 60	22046 20	0.61	2.11	2.10	2.05+06	20.21	E 49/
nentage	F1	00-02	4000	20.00	354000.00	32940.20	0.01	2.41	2.40	2.02+00	20.21	54%
Heritage	P1	60-62	5000	24.46	35/155.49	26366.67	0.31	2.41	2.46	2.0E+06	38.31	64%
Heritage	P1	60-62	6000	28.62	356377.71	22125.61	0.18	2.41	2.46	2.0E+06	38.31	75%
Heritage	P1	60-62	7000	31.37	354977.71	17570.04	0.12	2.41	2.46	2.0E+06	38.31	82%
Heritage	P1	60-62	8000	33.43	355133.27	12728.87	0.12	2.41	2.46	2.0E+06	38.31	87%
Heritage	P1	60-62	9000	35.54	354588.82	11386.14	0.27	2.41	2.46	2.0E+06	38.31	93%
Heritage	P1	60-62	10000	36.94	153066 64	12932.63	6.40	2 4 1	2.46	2 0E+06	38 31	96%
Heritage		50.02	10000	2 02	19441 21	212124.21	25406420.00	2.41	2.40	2.02.00	20.01	0%
Heritage	EBD	54-50	1000	2.65	10441.51	212124.21	25496450.00	2.45	2.44	2.0E+07	29.65	9%
Heritage	EB5	54-56	2000	4.35	18253.13	49117.61	//542.16	2.43	2.44	2.0E+07	29.85	15%
Heritage	EB5	54-56	3000	8.28	18265.14	42872.92	0.04	2.43	2.44	2.0E+07	29.85	28%
Heritage	EB5	54-56	4000	10.19	18261.14	26127.26	0.02	2.43	2.44	2.0E+07	29.85	34%
Heritage	EB5	54-56	5000	11.90	18377.25	32160.61	0.02	2.43	2.44	2.0E+07	29.85	40%
Heritage	EB5	54-56	6000	13.73	18405.27	33551.75	0.04	2.43	2.44	2.0E+07	29.85	46%
Heritage	EB5	54-56	7000	15.41	18281 16	30849.40	0.02	2 4 3	2 44	2 0E+07	29.85	52%
Heritage	505	54 50	8000	17.70	10201.10	16607.64	0.02	2.43	2.44	2.02.07	20.05	52/0
пентаge	EBD	54-50	8000	17.50	18201.14	10007.04	0.01	2.45	2.44	2.0E+07	29.65	56%
Heritage	EB5	54-56	9000	18.55	18253.13	17098.32	0.01	2.43	2.44	2.0E+07	29.85	62%
Heritage	EB5	54-56	10000	21.30	18481.34	12789.92	0.01	2.43	2.44	2.0E+07	29.85	71%
Heritage	EB5	54-56	11000	24.02	18281.16	12305.45	0.01	2.43	2.44	2.0E+07	29.85	80%
Heritage	EB5	54-56	12000	26.05	18277.15	9474.45	0.01	2.43	2.44	2.0E+07	29.85	87%
Heritage	FB5	54-56	13000	24 84	2386 24	9664 53	0.01	2 43	2 44	2 0F+07	29.85	83%
Ramsey Branch	0	63 5-66	1000	5 32	491761.99	75724 30	168.91	2.45	2.48	2.0E+06	50.62	11%
Ramsey Branch	Ő	63 5-66	2000	10.84	491225 72	50484 55	1 41	2.45	2.40	2.0E+06	50.62	21%
Ramsey Branch	0	63 5-66	3000	20.88	489724 16	38654 19	0.33	2.45	2.40	2.0E+06	50.62	41%
Ramsey Branch	Ő	63 5-66	4000	25.89	488866 12	29691 39	0.19	2.45	2.48	2.0E+06	50.62	51%
Ramsey Branch	ő	63 5-66	5000	29.73	488651 61	25823 70	0.19	2.45	2.48	2.0E+06	50.62	59%
Ramsey Branch	Ő	63.5-66	6000	35.13	489187.89	23994.61	0.20	2.45	2.48	2.0E+06	50.62	69%
Ramsey Branch	Ő	63.5-66	7000	40.97	495301.39	24793.34	0.23	2.45	2.48	2.0E+06	50.62	81%
Ramsey Branch	0	63 5-66	8000	46.80	489080 63	26482 16	0.27	2 4 5	2 48	2 0E+06	50.62	92%
Ramsey Branch	Ő	63.5-66	9000	52.77	488758.87	29367.18	0.36	2.45	2.48	2.0E+06	50.62	104%
Ramsey Branch	0	63.5-66	10000	62.39	488866.12	29787.88	0.52	2.45	2.48	2.0E+06	50.62	123%
Ramsey Branch	0	63.5-66	11000	72.10	494550.61	30890.74	1.12	2.45	2.48	2.0E+06	50.62	142%
Ramsev Branch	0	63.5-66	12000	76.93	242716.99	39855.12	2.91	2.45	2.48	2.0E+06	50.62	152%
Ramsey Branch	B2	31-33.5	1000	6.58	271531.25	51730.00	9905.98	2.55	2.57	5.0E+07	55.61	12%
Ramsey Branch	B2	31-33.5	2000	13.36	268178.29	47785.03	3.36	2.55	2.57	5.0E+07	55.61	24%
Ramsey Branch	B2	31-33.5	3000	26.14	268472.41	36223.28	0.72	2.55	2.57	5.0E+07	55.61	47%
Ramsey Branch	B2	31-33.5	4000	33.11	268354.76	22515.20	0.31	2.55	2.57	5.0E+07	55.61	60%
Ramsey Branch	B2	31-33.5	5000	41.24	268119.46	22755.43	0.25	2.55	2.57	5.0E+07	55.61	74%
Ramsey Branch	B2	31-33.5	6000	46.68	271295.95	23083.28	0.25	2.55	2.57	5.0E+07	55.61	84%
Ramsey Branch	B2	31-33.5	7000	53.86	268119.46	27408.79	0.34	2.55	2.57	5.0E+07	55.61	97%
Ramsey Branch	B2	31-33.5	8000	59.92	268001.81	28009.90	0.44	2.55	2.57	5.0E+07	55.61	108%
Ramsey Branch	B2	31-33.5	9000	66.07	141530.37	33349.79	9.52	2.55	2.57	5.0E+07	55.61	119%
Ramsey Branch	B2	41-43.5	1000	5.95	341244.81	42384.66	115.76	2.46	2.55	5.0E+05	52.93	11%
Ramsey Branch	B2	41-43.5	2000	11.46	337618.49	30361.05	2.45	2.46	2.55	5.0E+05	52.93	22%
Ramsey Branch	B2	41-43.5	3000	22.89	337470.47	17482.87	0.53	2.46	2.55	5.0E+05	52.93	43%
Ramsey Branch	B2	41-43.5	4000	29.70	337026.43	16052.18	0.37	2.46	2.55	5.0E+05	52.93	56%
Ramsey Branch	B2	41-43.5	5000	36.44	338506.57	17458.61	0.30	2.46	2.55	5.0E+05	52.93	69%
Ramsey Branch	B2	41-43.5	6000	43.01	339764.68	17660.49	0.26	2.46	2.55	5.0E+05	52.93	81%
Ramsey Branch	B2	41-43.5	7000	48.30	337766.50	18801.29	0.24	2.46	2.55	5.0E+05	52.93	91%
Ramsey Branch	B2	41-43.5	8000	54.39	336/30.41	19217.54	0.24	2.46	2.55	5.0E+05	52.93	103%
Ramsey Branch	B2	41-43.5	9000	60.39	337544.48	21264.75	0.33	2.46	2.55	5.0E+05	52.93	114%
Ramsey Branch	<u>B2</u>	41-43.5	10000	67.67	182056.44	22910.34	0.57	2.46	2.55	5.0E+05	52.93	128%
Ramsey Branch	83	48.5-51	1000	6.07	8/648/./9	32694.12	2.15	2.43	2.52	5.0E+05	50.62	12%
Ramsey Branch	83	48.5-51	2000	11.50	866223.13	32636.66	0.17	2.43	2.52	5.0E+05	50.62	23%
Ramsey Branch	83	48.5-51	3000	21.62	865842.96	17892.99	0.19	2.43	2.52	5.0E+05	50.62	43%
Ramsey Branch	5	48.5-51	4000	28.31	865662.79	1/0/9./5	0.23	2.43	2.52	5.UE+U5	50.62	50%
Ramsey Branch	53	48.5-51	5000	35.29	000003.31	10000 22	0.26	2.45	2.52	5.0E+05	50.62	70%
Ramsey Branch	50	40.5-51	7000	40.00	0//058.05	13003.73	0.20	2.45	2.52	5.UE+U5	50.62	0U%
Ramsey Branch	5 5 5	40.5-51	2000	47.35	000052.87	21212.03	0.20	2.45	2.52	5.UE+U5	50.62	94% 109%
Ramsey Branch	20	40.3-31	0000	54.50	000042.90 866772 12	22007.02	0.50	2.45	2.52	3.0E+05	50.02	120%
Ramsey Bidlicii	83	40.3-31	10000	60.02	866083 19	20109.34	0.01	2.45	2.52	5.02+05	50.62	120%
Ramsey Branch	83	48 5-51	11000	80.86	874396 84	27789 97	1 29	2.45	2.52	5.0E+05	50.62	160%
Ramsey Branch	83	48 5-51	12000	100.32	865082.62	48089 52	3.29	2.43	2.52	5.0E+05	50.62	198%
Ramsey Branch	B3	48,5-51	13000	100.32	23760.78	53798.88	4,10	2.43	2.52	5.0E+05	50.62	198%
	20											

F.3 Cyclic Triaxial Strain versus Time Plots from PythonTM

F.3.1 I-4 & SR-417

Figure F-1 – I-4 & SR-417: Sample Depth 20-22 ft

Figure F-2 I-4 & SR-417: Sample Depth 23-25 ft

Figure F-4 I-4 & SR-417: Sample Depth 55-57 ft

Figure F-5 I-4 & SR-417: Sample Depth 58-61 ft

F.3.2 Heritage Parkway

Figure F-7 - Heritage: Sample Depth 55-57 ft

Figure F-10 Heritage: Sample Depth 62-64 ft

Figure F-11 Heritage: Sample Depth 62-64 (Test 2) ft

Figure F-12 Heritage: Sample Depth 65-67 ft

F.3.3 I-10 & Chaffee

Figure F-14 I10 & Chaffee: Sample Depth 50-52 ft

Figure F-16 I10 & Chaffee: Sample Depth 54-56 ft

Figure F-17 I10 & Chaffee: Sample Depth 60-62 ft

Figure F-18 I10 & Chaffee: Sample Depth 60-63 ft

Figure F-22 I-4 & SR-192: Sample Depth 55-57 ft

Figure F-23 I-4 & SR-192: Sample Depth 60-62 ft

Figure F-24 I-4 & SR-192: Sample Depth 60-62 ft (Test 3)

Figure F-25 I-4 & SR-192: Sample Depth 70-72 ft

Figure F-26 I-4 & SR-192: Sample Depth 70-72 ft (Test 2)

Figure F-28 I-4 & SR-192: Sample Depth 75-77 ft (Test 2)

Figure F-29 I-4 & SR-192: Sample Depth 80-82 ft

Figure F-31 I-4 & SR-192: Sample Depth 85-87 ft (Test 2)

F.3.5 Ramsey Branch

Figure F-32 Ramsey Branch: Sample Depth 31-33.5 ft

Figure F-33 Ramsey Branch: Sample Depth 41-43.5ft

Figure F-34 Ramsey Branch: Sample Depth 48.5-51 ft

Figure F-35 Ramsey Branch: Sample Depth 63.5-66 ft

F.3.6 I-4 and Osceola Parkway

Figure F-38 Osceola: Sample Depth 75-76 ft (Test 2)

Figure F-39 Osceola: Sample Depth 80-81 ft

Figure F-40 Osceola: Sample Depth 80-81 ft (Test 2)

Figure F-41 Osceola: Sample Depth 80-82 ft

Figure F-42 Osceola: Sample Depth 80-82 ft (Test 2)

Appendix G. CAPWAP Output Tables Results

G.1 Chaffee Rd

CHAFFEE RD OVER I-10; Pile: PIER 2 PILE 9	Test:	15-Jun-2009	13:59:
PILECO D36-32; Blow: 354		CAPWAP (R)	2006-3
Florida Institute of Technology		OP:	GRL-CH
CAPWAP SUMMARY RESULTS			

Total	CAPWAP	Capacity	421.	1; along	Shaft	171.1; at !	Toe 250.0	kips	
So	il	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgm	nt	Below	Below		in Pile	of	Resist.	Resist.	Damping
N	lo.	Gages	Grade			Ru	(Depth)	(Area)	Factor
		ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
					421.1				
	1	13.2	4.4	18.2	402.9	18.2	4.13	0.69	0.027
	2	19.8	11.0	18.8	384.1	37.0	2.84	0.47	0.027
	3	26.5	17.6	19.3	364.8	56.3	2.92	0.49	0.027
	4	33.1	24.3	17.4	347.4	73.7	2.63	0.44	0.027
	5	39.7	30.9	9.9	337.5	83.6	1.50	0.25	0.027
	6	46.3	37.5	1.6	335.9	85.2	0.24	0.04	0.027
	7	52.9	44.1	0.9	335.0	86.1	0.14	0.02	0.027
	8	59.5	50.7	9.1	325.9	95.2	1.38	0.23	0.027
	9	66.2	57.3	17.7	308.2	112.9	2.68	0.45	0.027
	10	72.8	63.9	20.2	288.0	133.1	3.05	0.51	0.027
	11	79.4	70.6	19.2	268.8	152.3	2.90	0.48	0.027
	12	86.0	77.2	18.8	250.0	171.1	2.84	0.47	0.027
Avg	. Shaft	:		14.3			2.22	0.37	0.027
	Тое			250.0				111.11	0.074

Figure G-1 - PR2PL9 - BN 354

G.2 Heritage Parkway

PALM BAY PK OVER C1 CANAL; Pile: End Bent 1 Pile 1 APE 36-32; Blow: 279 Florida Institute of Technology

Test: 17-Dec-2012 12:25: CAPWAP(R) 2006-3 OP: GRL

CAPWAP SUMMARY RESULTS												
Total	CAPWAP	Capacit	y: 420	.4; along	Shaft	89.4; at	Toe 331.0	kips				
So	i1	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith			
Sgm	nt	Below	Below		in Pile	of	Resist.	Resist.	Damping			
No	ο.	Gages	Grade			Ru	(Depth)	(Area)	Factor			
		ft	ft	kips	kips	kips	kips/ft	ksf	s/ft			
					420.4							
	1	64.1	7.2	0.0	420.4	0.0	0.00	0.00	0.000			
	2	70.8	13.9	0.0	420.4	0.0	0.00	0.00	0.000			
	3	77.5	20.7	0.0	420.4	0.0	0.00	0.00	0.000			
	4	84.3	27.4	0.0	420.4	0.0	0.00	0.00	0.000			
	5	91.0	34.2	0.0	420.4	0.0	0.00	0.00	0.000			
	6	97.8	40.9	0.0	420.4	0.0	0.00	0.00	0.000			
	7	104.5	47.6	0.0	420.4	0.0	0.00	0.00	0.000			
	8	111.3	54.4	30.9	389.5	30.9	4.58	0.76	0.194			
	9	118.0	61.1	58.5	331.0	89.4	8.68	1.45	0.194			
Avg	. Shaft	E		9.9			1.46	0.24	0.194			
	Toe			331.0				147.11	0.111			

Figure G-2 – EB1P1 – BN 279

Palm Bay Pk over C1 Canal; Pile	End Bent 5 Pile 1	Test: 20-Dec-2012	16:31:
APE D36-32; Blow: 450		CAPWAP (R)	2006-3
Florida Institute of Technology		OP: G	RL-RMG

				CAPWA	P SUMMARY	RESULTS			
Total (CAPWAP	Capacity	419.9	; along	Shaft	113.8; at	Toe 306.1	kips	
Soi	1	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmn	t	Below	Below		in Pile	of	Resist.	Resist.	Damping
No	-	Gages	Grade			Ru	(Depth)	(Area)	Factor
		ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
					419.9				
	1	70.8	4.9	6.1	413.8	6.1	1.26	0.21	0.088
	2	77.5	11.6	4.3	409.5	10.4	0.64	0.11	0.088
	3	84.3	18.3	1.1	408.4	11.5	0.16	0.03	0.088
	4	91.0	25.1	0.0	408.4	11.5	0.00	0.00	0.000
	5	97.8	31.8	2.2	406.2	13.7	0.33	0.05	0.088
	6	104.5	38.6	16.6	389.6	30.3	2.46	0.41	0.088
	7	111.3	45.3	35.4	354.2	65.7	5.25	0.87	0.088
	8	118.0	52.1	48.1	306.1	113.8	7.13	1.19	0.088
Avg.	Shaft	t		14.2			2.19	0.36	0.088
	Toe			306.1				136.04	0.189

Figure G-3 – EB5P1 – BN 450

Palm Bay Pk	over C1	Canal;	Pile:	Int	Bent	3	Pile	1
APE D36-32;	Blow: 2	80						
Florida Inst	titute o	f Techno	ology					

Test: 20-Dec-2012 14:14: CAPWAP(R) 2006-3 OP: GRL-RMG

				CAPWA	P SUMMARY	RESULTS			
Total	CAPWAP	Capacity	: 450.8	; along	Shaft	63.1; at	Toe 387.7	kips	
Sc	il	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgn	nt	Below	Below		in Pile	of	Resist.	Resist.	Damping
в	lo.	Gages	Grade			Ru	(Depth)	(Area)	Factor
		ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
					450.8				
	1	77.5	8.1	0.1	450.7	0.1	0.01	0.00	0.358
	2	84.3	14.9	0.1	450.6	0.2	0.01	0.00	0.358
	3	91.0	21.6	0.2	450.4	0.4	0.03	0.00	0.358
	4	97.8	28.3	0.1	450.3	0.5	0.01	0.00	0.358
	5	104.5	35.1	0.0	450.3	0.5	0.00	0.00	0.000
	6	111.3	41.8	15.6	434.7	16.1	2.31	0.39	0.358
	7	118.0	48.6	47.0	387.7	63.1	6.97	1.16	0.358
Avg	. Shaft	t		9.0			1.30	0.22	0.358
	Toe			387.7				172.31	0.052

Figure G-4 - IB3P1 - BN 280

Palm Bay Pk over Cl Canal; Pile: Int Bent 4 Pile 10	Test: 21-Dec-2012 13:19:
APE D36-32; Blow: 158	CAPWAP(R) 2006-3
Florida Institute of Technology	OP: GRL-RMG

					CAPWA	P SUMMARY	RESULTS			
Total	CAPWAP	Capacity	: 3	96.4;	along	Shaft	48.0; at	Toe 348.4	kips	
So	11	Dist.	Depth		Ru	Force	Sum	Unit	Unit	Smith
Sgmr	nt 1	Below	Below			in Pile	of	Resist.	Resist.	Damping
No	o. (Gages	Grade				Ru	(Depth)	(Area)	Factor
		ft	ft	k	ips	kips	kips	kips/ft	ksf	s/ft
						396.4				
	1	77.5	7.6		0.1	396.3	0.1	0.01	0.00	0.051
	2	84.3	14.3		0.1	396.2	0.2	0.01	0.00	0.051
	3	91.0	21.1		0.0	396.2	0.2	0.00	0.00	0.000
	4	97.8	27.8		0.3	395.9	0.5	0.04	0.01	0.051
	5	104.5	34.6		5.4	390.5	5.9	0.80	0.13	0.051
	6	111.3	41.3	1	6.1	374.4	22.0	2.39	0.40	0.051
	7	118.0	48.1	2	6.0	348.4	48.0	3.86	0.64	0.051
Avg	. Shaft	:			6.9			1.00	0.17	0.051
	Toe			34	8.4				154.84	0.088

Figure G-5 – IB4P10 – BN 158

G.3 I-4 & SR-192

RAMP CA FLYOVER;	Pile: PIER 8 PII	LE 4
ICE 120-S; Blow:	2260	
Florida Institute	a of Technology	

Test: 19-Aug-2005 16:05: CAPWAP(R) 2006-3 OP: GRL/MH

				CAPWA	P SUMMARY	RESULTS			
Total C	CAPWAP	Capacity	389.	5; along	Shaft	110.1; at	Toe 279.4	kips	
Soi	1 D	ist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmn	t B	elow	Below		in Pile	of	Resist.	Resist.	Damping
No	. 0	ages	Grade			Ru	(Depth)	(Area)	Factor
		ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
					389.5				
1	1	26.3	4.7	32.9	356.6	32.9	7.02	0.88	0.211
:	2	32.9	11.3	22.0	334.6	54.9	3.35	0.42	0.211
:	3	39.4	17.8	9.5	325.1	64.4	1.45	0.18	0.211
	4	46.0	24.4	4.6	320.5	69.0	0.70	0.09	0.211
1	5	52.6	31.0	9.4	311.1	78.4	1.43	0.18	0.211
	6	59.1	37.5	19.5	291.6	97.9	2.97	0.37	0.211
	7	65.7	44.1	5.9	285.7	103.8	0.90	0.11	0.211
1	8	72.3	50.7	6.3	279.4	110.1	0.96	0.12	0.211
1	9	78.9	57.3	0.0	279.4	110.1	0.00	0.00	0.000
1	0	85.4	63.8	0.0	279.4	110.1	0.00	0.00	0.000
1	1	92.0	70.4	0.0	279.4	110.1	0.00	0.00	0.000
Avg.	Shaft			10.0			1.56	0.20	0.211
	Toe			279.4				69.85	0.028

Figure G-6 - P8P4 - BN 2260

G.4 SR-417 & International

SR 417 INTL PKWY RAMP; Pile: END BENT 1 PILE 14 APE D46-42 HAMMER; Blow: 322 Florida Institute of Technology Test: 14-Mar-2011 11:39: CAPWAP(R) 2006-3 OP: GRL-MH

				CAPWA	P SUMMARY	RESULTS			
Total	CAPWAR	Capacity	: 40	7.3; along	Shaft	90.1; at	Toe 317.2	kips	
S	oil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgr	nnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
1	No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
		ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
					407.3				
	1	72.6	3.4	0.0	407.3	0.0	0.00	0.00	0.000
	2	79.2	10.0	0.0	407.3	0.0	0.00	0.00	0.000
	3	85.8	16.6	0.4	406.9	0.4	0.06	0.01	0.171
	4	92.4	23.2	33.3	373.6	33.7	5.05	0.63	0.171
	5	99.0	29.8	56.4	317.2	90.1	8.55	1.07	0.171
Ave	g. Shaf	t		18.0			3.02	0.38	0.171
	Toe			317.2				79.30	0.170

Figure G-7 – EB1P14 – BN 322

SR	417	INTL	PKWY	RAMP;	Pile:	END	BENT	2	PILE	5
APE	5 D46	5-42 1	HAMMER	R; Blow	: 1479	9				

Florida Institute of Technology

Test: 16-Mar-2011 15:16: CAPWAP(R) 2006-3

OP: GRL

				CAPW	AP SUMMARY	RESULTS			
Total	CAPWAP	Capacity	: 5	77.2; along	Shaft	111.6; at	Toe 465.6	kips	
So	il	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgm	nt	Below	Below		in Pile	of	Resist.	Resist.	Damping
N	lo.	Gages	Grade			Ru	(Depth)	(Area)	Factor
		ft	ft	kips	kips	kips	kips/ft	ksf	s/ft
					577.2				
	1	33.0	7.0	0.5	576.7	0.5	0.07	0.01	0.182
	2	39.6	13.6	2.8	573.9	3.3	0.42	0.05	0.182
	3	46.2	20.2	6.2	567.7	9.5	0.94	0.12	0.182
	4	52.8	26.8	7.9	559.8	17.4	1.20	0.15	0.182
	5	59.4	33.4	7.3	552.5	24.7	1.11	0.14	0.182
	6	66.0	40.0	6.4	546.1	31.1	0.97	0.12	0.182
	7	72.6	46.6	6.7	539.4	37.8	1.02	0.13	0.182
	8	79.2	53.2	7.2	532.2	45.0	1.09	0.14	0.182
	9	85.8	59.8	9.6	522.6	54.6	1.45	0.18	0.182
	10	92.4	66.4	21.0	501.6	75.6	3.18	0.40	0.182
	11	99.0	73.0	36.0	465.6	111.6	5.45	0.68	0.182
Avg	. Shaft	5		10.1			1.53	0.19	0.182
	Toe			465.6				116.40	0.103

Figure G-8 - EB2P5 - BN 1479

G.5 Ramsey Branch

SR 83 OVER RAMSEY	BRANCH; Pile: END BENT 1 PILE 1	Test: 11-Jul-2014	15:04:
APE D50-42; Blow:	654	CAPWAP (R)	2006-3
Florida Institute	of Technology	OP:	GRL-DP
	CAPWAR SIMMARY RESULTS		

CREME SUMMATI RESULTS											
Total	CAPWAP	Capacity	r: :	336.4; along	Shaft	26.9; at	Toe 309.5	kips			
So	il	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith		
Sgm	nt	Below	Below	,	in Pile	of	Resist.	Resist.	Damping		
N	ο.	Gages	Grade	,		Ru	(Depth)	(Area)	Factor		
		ft	ft	kips	kips	kips	kips/ft	ksf	s/ft		
					336.4						
	1	33.7	5.5	19.6	316.8	19.6	3.56	0.44	0.945		
	2	40.4	12.2	6.6	310.2	26.2	0.98	0.12	0.945		
	3	47.1	19.0	0.2	310.0	26.4	0.03	0.00	0.945		
	4	53.9	25.7	0.0	310.0	26.4	0.00	0.00	0.000		
	5	60.6	32.4	0.0	310.0	26.4	0.00	0.00	0.000		
	6	67.3	39.2	0.0	310.0	26.4	0.00	0.00	0.000		
	7	74.1	45.9	0.0	310.0	26.4	0.00	0.00	0.000		
	8	80.8	52.6	0.0	310.0	26.4	0.00	0.00	0.000		
	9	87.5	59.4	0.1	309.9	26.5	0.01	0.00	0.945		
	10	94.3	66.1	0.4	309.5	26.9	0.06	0.01	0.945		
	11	101.0	72.8	0.0	309.5	26.9	0.00	0.00	0.000		
Avg. Shaft			2.4			0.37	0.05	0.945			
	Toe			309.5				77.37	0.163		

Figure G-9 - EB1P1 - BN 654

SR 83 OVER RAMSEY BRANCH; Pile: END BENT 1 PILE 3 APE D50-42; Blow: 600 Florida Institute of Technology Test: 07-Aug-2014 09:50: CAPWAP(R) 2006-3 OP: GRL-DP

CAPWAP SUMMARY RESULTS										
Total	CAPWAP	Capacity	: 299.	7; along	Shaft	36.5; at	Toe 263.2	kips		
So	il	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	
Sgm	nt	Below	Below		in Pile	of	Resist.	Resist.	Damping	
N	lo.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
		ft	ft	kips	kips	kips	kips/ft	ksf	s/ft	
					299.7					
	1	9.9	6.1	9.0	290.7	9.0	1.48	0.18	0.069	
	2	16.5	12.7	6.2	284.5	15.2	0.94	0.12	0.069	
	3	23.1	19.3	3.0	281.5	18.2	0.45	0.06	0.069	
	4	29.7	25.9	1.3	280.2	19.5	0.20	0.02	0.069	
	5	36.3	32.5	1.5	278.7	21.0	0.23	0.03	0.069	
	6	43.0	39.1	3.3	275.4	24.3	0.50	0.06	0.069	
	7	49.6	45.8	5.2	270.2	29.5	0.79	0.10	0.069	
	8	56.2	52.4	5.0	265.2	34.5	0.76	0.09	0.069	
	9	62.8	59.0	2.0	263.2	36.5	0.30	0.04	0.069	
	10	69.4	65.6	0.0	263.2	36.5	0.00	0.00	0.000	
	11	76.0	72.2	0.0	263.2	36.5	0.00	0.00	0.000	
Avg. Shaft		:		3.3			0.51	0.06	0.069	
	тое			263.2				65.80	0.133	

Figure G-10 – EB1P3 – BN 600
US331 OVER RAMSEY BRANCH; Pile: BENT 4 PILE 5 APE D50-42; Blow: 1322 Florida Institute of Technology

Test: 07-Oct-2013 18:39: CAPWAP(R) 2006-3 OP: GRL-DP

0.11	Diet			Banco	00.9, at 1		napo	0-111
Soll	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in File	10	Resist.	Kesist.	Damping
NO.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	It	It	Kips	Kips	Kips	kips/ft	KSI	s/11
				244.0		2 (2		
1	49.7	4.5	16.6	227.4	16.6	3.69	0.46	0.024
2	56.3	11.1	8.5	218.9	25.1	1.28	0.16	0.024
3	63.0	17.8	0.0	218.9	25.1	0.00	0.00	0.000
4	69.6	24.4	0.0	218.9	25.1	0.00	0.00	0.000
5	76.2	31.0	0.0	218.9	25.1	0.00	0.00	0.000
6	82.9	37.6	8.6	210.3	33.7	1.30	0.16	0.024
7	89.5	44.3	17.2	193.1	50.9	2.59	0.32	0.024
8	96.1	50.9	21.0	172.1	71.9	3.17	0.40	0.024
9	102.7	57.5	11.9	160.2	83.8	1.80	0.22	0.024
10	109.4	64.2	3.1	157.1	86.9	0.47	0.06	0.024
11	116.0	70.8	0.0	157.1	86.9	0.00	0.00	0.000
A			7 9			1 22	0.15	0 02/
Avg. S	hart		1.9			1.25	0.15	0.024
Avg. S	oe		157.1			1.25	39.27	0.207
AVG. S	oe	Fig	157.1 gure G-1	1 - EB4	P5 – BN 1	322	39.27	0.207
xvg. s T \$331 OVE	oe R RAMSEY B	Fig Ranch; pile	157.1 gure G-1	1 - EB41 97 5 pile 2	P5 – BN 1	322 Test:	39.27 02-Oct-20	0.207
xvg. S T S331 OVE PE D50-4	OG R RAMSEY B 2; Blow: 4	Fig Ranch; pile 80	157.1 gure G-1	1 - EB41 rt 5 pile 2	P5 – BN 1	322 Test:	02-Oct-20 CAPWAP (R	0.207 13 10:22:) 2006-3
XVg. S T S331 OVE PE D50-4 lorida I	oe R RAMSEY Bi 2; Blow: 4 nstitute o:	Fig RANCH; Pile 80 f Technolog	157.1 gure G-1 a: END BE	1 - EB41 NT 5 PILE 2	P5 – BN 1	322 Test:	02-Oct-20 CAPWAP (R	0.20 0.20 13 10:22:) 2006-3 P: GRL-DP
XVG. S T S331 OVE PE D50-4 lorida I	oe R RAMSEY B 2; Blow: 4 nstitute o:	Fig RANCH; Pile 80 f Technolog	157.1 gure G-1 s: end ber	1 - EB41 nt 5 pile 2 p summary	P5 – BN 1 Results	322 Test:	02-Oct-20 CAPWAP (R	0.207 0.207 13 10:22:) 2006-3 P: GRL-DP
XVG. S T S331 OVE PE D50-4 lorida I otal CAP	NAIC R RAMSEY B 2; Blow: 4 Natitute o: WAP Capaci:	Fig RANCH; Pile 80 f Technolog ty: 229	157.1 gure G-1 a: END BEI NY CAPWA 2; along	1 - EB41 NT 5 PILE 2 P SUMMARY Shaft	P5 – BN 1 RESULTS 28.0; at To	322 Test:	02-Oct-20 CAPWAP(R O kips	0.20 0.20 13 10:22:) 2006-3 P: GRL-DP
T S331 OVE PE D50-4 lorida I otal CAP Soil	NAP Capaci Dist.	Fig RANCH; Pile 80 f Technolog ty: 229. Depth	157.1 gure G-l a: END BEI IV CAPWA 2; along Ru	1 - EB41 NT 5 PILE 2 P SUMMARY Shaft Force	P5 - BN 1 RESULTS 28.0; at To Sum	322 Test:	0.13 39.27 02-Oct-20 CAPWAP(R O kips Unit	0.20 0.20 13 10:22:) 2006-3 P: GRL-DP Smith
AVG. S T S331 OVE PE D50-4 lorida I otal CAP Soil Sgmnt	R RAMSEY Bi 2; Blow: 4 hstitute o: WAP Capaci: Dist. Below	Fig RANCH; Pile 80 f Technolog ty: 229 Depth Below	157.1 gure G-l s: END BEI BY CAPWA 2; along Ru	1 - EB41 NT 5 PILE 2 P SUMMARY Shaft Force in Pile	P5 - BN 1 RESULTS 28.0; at To Sum of	322 Test: 201.2 Unit Resist.	0.13 39.27 02-Oct-20 CAPWAP(R O kips Unit Resist.	0.20 0.20 13 10:22:) 2006-3 P: GRL-DP Smith Damping
Avg. S T S331 OVE PE D50-4 lorida I otal CAP Soil Sgmnt No.	R RAMSEY Bi 2; Blow: 4 hstitute o: WAP Capaci Dist. Below Gages	Fig RANCH; Pile 80 f Technolog ty: 229 Depth Below Grade	157.1 gure G-l s: END BEI BY CAPWA 2; along Ru	1 - EB41 NT 5 PILE 2 P SUMMARY Shaft Force in Pile	P5 - BN 1 RESULTS 28.0; at To Sum of Ru	322 Test: 201.2 Unit Resist. (Depth)	0.13 39.27 02-Oct-20 CAPWAP(R O Nit Resist. (Area)	0.20 0.20 13 10:22:) 2006-3 P: GRL-DP Smith Damping Factor
T S331 OVE PE D50-4 lorida I otal CAP Soil Sgmnt No.	NAP Capaci Dist. Below Gages ft	Fig RANCH; Pile 80 f Technolog ty: 229 Depth Below Grade ft	157.1 gure G-1 a: END BEI TY CAPWA 2; along Ru kips	11 - EB41 NT 5 PILE 2 P SUMMARY Shaft Force in Pile kips	P5 - BN 1 RESULTS 28.0; at To Sum of Ru kips	322 Test: De 201.2 Unit Resist. (Depth) kips/ft	0.13 39.27 02-Oct-20 CAPWAP(R O Vint Resist. (Area) ksf	0.20 0.20 13 10:22:) 2006-3 P: GRL-DP Smith Damping Factor s/ft
T S331 OVE PE D50-4 lorida I otal CAP Soil Sgmnt No.	A RAMSEY Bi 2; Blow: 44 Astitute of WAP Capaci Dist. Below Gages ft	Fig RANCH; Pile 80 f Technolog ty: 229 Depth Below Grade ft	157.1 gure G-J a: END BEI CAPWA 2; along Ru kips	11 - EB41 WT 5 PILE 2 P SUMMARY Shaft Force in Pile kips 229.2	P5 - BN 1 RESULTS 28.0; at To Sum of Ru kips	322 Test: De 201.2 Unit Resist. (Depth) kips/ft	0.13 39.27 02-Oct-20 CAPWAP(R O Unit Resist. (Area) ksf	0.20 0.20 13 10:22: 2006-3 P: GRL-DP Smith Damping Factor s/ft
T S331 OVE PE D50-4 lorida I otal CAP Soil Sgmnt No.	R RAMSEY Bi 2; Blow: 4 hstitute of WAP Capaci Dist. Below Gages ft 30.3	Fig RANCH; Pile 80 f Technolog ty: 229 Depth Below Grade ft 2.3	157.1 gure G-1 a: END BEI TY CAPWA 2; along Ru kips 1.1	P SUMMARY Shaft Force in Pile kips 229.2 228.1	P5 - BN 1 RESULTS 28.0; at To Sum of Ru kips 1.1	322 Test: De 201.2 Unit Resist. (Depth) kips/ft 0.48	0.13 39.27 02-Oct-20 CAPWAP(R 0 Unit Resist. (Area) ksf 0.06	0.20 0.20
T S331 OVE PE D50-4 lorida I otal CAP Soil Sgmnt No.	AR RAMSEY BI 2; Blow: 44 hstitute of WAP Capaci Dist. Below Gages ft 30.3 37.1	Fig RANCH; Pile 80 f Technolog ty: 229 Depth Below Grade ft 2.3 9.1	157.1 gure G-l a: END BEI TY CAPWA 2; along Ru kips 1.1 0.0	II - EB4I NT 5 PILE 2 P SUMMARY Shaft Force in Pile kips 229.2 228.1 228.1	P5 - BN 1 RESULTS 28.0; at To Sum of Ru kips 1.1 1.1	322 Test: De 201.2 Unit Resist. (Depth) kips/ft 0.48 0.00	0.13 39.27 02-Oct-20 CAPWAP(R O Unit Resist. (Area) ksf 0.06 0.00	0.02 0.20
T S331 OVE PE D50-4 lorida I otal CAP Soil Sgmnt No.	AR RAMSEY BI 2; Blow: 44 hstitute of WAP Capaci Dist. Below Gages ft 30.3 37.1 43.8	Fig RANCH; Pile 80 f Technolog ty: 229 Depth Below Grade ft 2.3 9.1 15.8	157.1 gure G-1 a: END BEI TY CAPWA 2; along Ru kips 1.1 0.0 0.0	II - EB4I NT 5 PILE 2 P SUMMARY Shaft Force in Pile kips 229.2 228.1 228.1 228.1	P5 - BN 1 RESULTS 28.0; at To Sum of Ru kips 1.1 1.1 1.1	322 Test: De 201.2 Unit Resist. (Depth) kips/ft 0.48 0.00 0.00	0.13 39.27 02-Oct-20 CAPWAP(R O Unit Resist. (Area) ksf 0.06 0.00 0.00	0.02 0.20 13 10:22:) 2006-3 P: GRL-DP Smith Damping Factor s/ft 0.169 0.000 0.000
T S331 OVE PE D50-4 lorida I otal CAP Soil Sgmnt No.	AR RAMSEY Bi 2; Blow: 4 hstitute of WAP Capaci Dist. Below Gages ft 30.3 37.1 43.8 50.6	Fig RANCH; Pile 80 f Technolog ty: 229 Depth Below Grade ft 2.3 9.1 15.8 22.5	157.1 gure G-1 a: END BEI TY CAPWA 2; along Ru kips 1.1 0.0 0.0 0.0	P SUMMARY Shaft Force in Pile kips 229.2 228.1 228.1 228.1 228.1	P5 - BN 1 RESULTS 28.0; at To Sum of Ru kips 1.1 1.1 1.1 1.1	322 Test: De 201.2 Unit Resist. (Depth) kips/ft 0.48 0.00 0.00 0.00	0.13 39.27 02-Oct-20: CAPWAP(R O Unit Resist. (Area) ksf 0.06 0.00 0.00 0.00 0.00	0.02 0.20 13 10:22: 0 2006-3 P: GRL-DP Smith Damping Factor s/ft 0.169 0.000 0.000 0.000 0.000
T S331 OVE PE D50-4 lorida I otal CAP Soil Sgmnt No.	AR RAMSEY Bi 2; Blow: 4 hstitute of WAP Capaci Dist. Below Gages ft 30.3 37.1 43.8 50.6 57.3	Fig RANCH; Pile 80 f Technolog ty: 229 Depth Below Grade ft 2.3 9.1 15.8 22.5 29.3	157.1 gure G-1 a: END BEI y CAPWA 2; along Ru kips 1.1 0.0 0.0 0.0 0.0	11 - EB41 NT 5 PILE 2 P SUMMARY Shaft Force in Pile kips 229.2 228.1 228.1 228.1 228.1 228.1 228.1	P5 - BN 1 2 RESULTS 28.0; at To Sum of Ru kips 1.1 1.1 1.1 1.1 1.1	322 Test: De 201.2 Unit Resist. (Depth) kips/ft 0.48 0.00 0.00 0.00 0.00	0.13 39.27 02-Oct-20: CAPWAP(R Ol kips Unit Resist. (Area) ksf 0.06 0.00 0.00 0.00 0.00 0.00	0.02 0.20 13 10:22: 0 2006-3 P: GRL-DP Smith Damping Factor s/ft 0.169 0.000 0.000 0.000 0.000 0.000

	37.4	2.A	0.0	A.O.A	* . *	0.00	0.00	0.000
3	43.8	15.8	0.0	228.1	1.1	0.00	0.00	0.000
4	50.6	22.5	0.0	228.1	1.1	0.00	0.00	0.000
5	57.3	29.3	0.0	228.1	1.1	0.00	0.00	0.000
6	64.0	36.0	0.0	228.1	1.1	0.00	0.00	0.000
7	70.8	42.8	0.0	228.1	1.1	0.00	0.00	0.000
8	77.5	49.5	1.0	227.1	2.1	0.15	0.02	0.169
9	84.3	56.2	8.6	218.5	10.7	1.28	0.16	0.169
10	91.0	63.0	17.3	201.2	28.0	2.57	0.32	0.169
Avg. Shaft			2.8			0.44	0.06	0.169
Toe	•		201.2				50.30	0.063

Figure G-12 - EB5P2 - BN 480

Appendix H. Lessons Learned from PDM Field Usage

The basic equipment, set-up procedures for the Inopiles Pile Driving Monitor (PDM) are outlined. For more detailed information please see the PDM User's Manual supplied with the equipment and Chapter 4 of this report. At the time of this report an internet search indicates that the equipment is available in the US from AFT.

H.1 PDM Initial Equipment Evaluation and Setup

Inopiles supplies a schematic for the PDM set up which includes a table of active (or measuring) zone heights versus offset distance from object (i.e., typically a pile). The measuring zone is a vertical distance up from a horizontal line projected onto the object up at an angle of 2.6 degrees as shown in Figure H-1. They show the PDM being placed on a flat surface and a sand filled black leather bag, which is designed to keep the PDM level during use.

Note that the measuring zone is about 18-inches maximum. It can be viewed by the operator as the distance between the two red dots shown in the schematic. Note however, these dots are only visible prior to testing. Once the software begins to collect data they are no longer shown. We recommend that the operator marks the pile/rods with colored chalk or possibly a set of string lines attached to the pile leads prior to each testing sequence. This additional step may not be possible during pile driving unless the installation is stopped.

Figure H-1 Schematic of Inopiles Operation within Active Zone

The Inopiles PDM in the case, leveling bag and the accompanying Surface Pro tablet are shown in Figure H-2 Note that the power requirements for the PDM included an Australian plug, while the Surface Pro[®] required a European plug. These differences required special purchases for charging and operation in the US. The PDM data acquisition and reduction software, which runs on the Surface Pro[®] and can be configured for a laptop, allows for the creation of reports for each set of tests within an active zone. Metric or English units may be selected by the user.

Please bring a tent for shade and to prevent rainfall onto the PDM. Avoid carrying the PDM from the vehicle to the test location in heavy rain. Rain droplets could obscure the infrared light and the lasers used to denote the active zone.

Our experience indicates that the Surface Pro[®] battery life and operation may not be completely reliable, therefore we asked Inopiles for permission to place their software on a Laptop PC, which was granted. We recommend that any field laptop be equipped with a special screen to allows the operator to view data properly. Standard screens are difficult to read due to glare.

Figure H-2 Inopiles PDM in Case, leveling bag and Surface Pro®

Please ensure that all the charging cables are US compatible. The cables shipped with the unit are not. We found the cables at a local computer store.

H.2 Reflective Tape Evaluations

Three different reflective tapes were utilized during the lab and field testing. The first tape was that supplied by Inopiles, a 3M Diamond Grade tape. A second tape was purchased to replace the 3M Diamond Grade tape. It was 3M 3430 White Prismatic Sheeting Reflective Tape 3" x 6". The third tape was purchased from ULINE with a product name of Outdoor Reflective Tape -2" x 50', WHITE. This third tape worked the best based on our work, however, all three tapes functioned well during field testing.

Our experience with all tapes was that they had to be placed such that they were 2-inchs (50 mm) wide on the surface. If they were less than this thickness, they did not reflect the signal from the PDM well enough for data to be recorded.

H.3 PDM Field Testing Equipment

The equipment required to perform testing includes:

- 1) PDM Unit*
- 2) PDM power cable*
- 3) PDM data cable *
- 4) PDM mounting piece*
- 5) Surveying Tripod
- 6) Reflective tape*
- 7) Ryobi Laser distance finder*
- 8) 100-foot Surveying Measuring tape
- 9) Laptop PC with PDM software
- 10) Laptop charging cable
- 11) Tablet with PDM software*
- 12) Tablet charging cable*
- 13) Power adapter (Europe USA)
- 14) Power adapter (Australia USA)
- 15) PDM manual*
- 16) Driving log notes
- 17) Extension cables
- 18) Tent
- 19) Rags
- 20) Miscellaneous Tools

The equipment supplied with the PDM are denoted with an *.

The manufacturer recommends that the PDM, laptop and tablet be completely charged before arriving at the job site. We recommend that equipment be carefully charged several days before use. Additionally, all cables must be transported to the site in case additional charging is required. During testing at the six sites, the PDM battery lasted throughout the workdays. However, both the tablet and the laptop batteries required charging after several hours of use. Also, be careful not to leave the Laptop PC on during travel time to the site as this extra duration will drain the battery.

H.4 PDM Data Collection for Piles

H.4.1 PDM Pile Setup

Use of the manufacturers recommended leveling sandbag was not successful during deployment at the initial site. The research team, therefore, recommends that the PDM be placed on a tripod using the mounting piece and located between 5 and 20 meters from the pile. It should then be connected to either the laptop or tablet using the appropriate data cable. When the computers are connected properly to the PDM and its software the red guide lasers will turn on. Operators should be able to see these on the pile or rods prior to testing, etc., therefore, the PDM should be placed directly in line and perpendicular to the pile. The distance from the PDM to the pile also affects the width of the reflective tape. The research team determined that a minimum of 4-inch by thick 6-inches wide tape should be placed on the piles. The exact distance, to within 2-inches, should be adjusted so that the PDM is level with an unobstructed field of view. The field of view can be seen by where the guide lasers that the PDM outputs lie on the pile (note that these lasers turn off during testing). It is recommended that the equipment be setup under a tent or other shaded area so that either the laptop or tablet do not overheat, and the associated screen is easier to read.

Our final recommendations are to have the surveying crew determine the elevation of the center of the PDM once it is mounted and leveled on the tripod. This elevation should be compared to the template elevation (i.e. beam) and the PDM operator should be made aware of whether the top of the template beam is being used. Use the 100- foot tape to confirm the distance from the PDM to the pile or rods being tested.

H.4.2 Pile Preparation and Data Collection

Prior to placing reflective tape on piles, determine the depth of predrilling and or jetting. When piles are pre-drilled, it is not necessary to put tape on the first section of pile as it will drive too fast for data to be collected. Piles are marked in one-foot increments with labels every five feet. The research team recommends that reflective tape be placed on the pile every five feet. This spacing will allow the software operator to input and prepare for the subsequent set of data collection as the pile is being continuously driven.

This spacing of 5 feet did not produce enough data during the research and needs further evaluations. It might be better to check movement every 10 or 20 feet and compare them to the PDA movement. It might also be better to place tape on the piles when driving has to be stopped for such things as replacing the wooden cushions, adjustments in stroke height etc.

Our experience with this data entry was that it was difficult to complete all the required step for input when the tape spacing was 5 feet apart.